CS 599: Rounding Techniques in Approximation Algorithms

Homework 1: Intro and Independent Randomized Rounding *Fall* 2024

1 Problem 1: Vertex Cover

- 1. Write the natural integer programming relaxation for Vertex Cover and the corresponding relaxed linear program.
- 2. Prove that if *x* is an extreme point solution to this LP, then $x_v \in \{0, \frac{1}{2}, 1\}$ for all $v \in V$.
- 3. Give a $\frac{3}{2}$ approximation for Vertex Cover on planar graphs. Show a matching lower bound on the integrality gap.
- 4. Given an example that shows the greedy algorithm for vertex cover (iteratively picking the max degree vertex and deleting it and its edges from the graph) has approximation ratio $\Omega(\log n)$.
- 5. (*Bonus question*) Give a lower bound showing that the Vertex Cover LP with triangle constraints (see Lecture 1) still has an integrality gap of 2 (up to lower order terms).

2 Problem 2: Chernoff Bounds

- 1. Prove that the congestion for the multi-commodity flow problem we discussed in Lecture 2 can be improved to $O(\log n / \log \log n)$.
- 2. Prove that the maximum degree of a vertex in a uniformly random spanning tree on the complete graph is $O(\log n / \log \log n)$ with high probability. You may use the Prüfer code.

3 Problem 3: Set Cover

Set cover is a generalization of vertex cover. Here we are given elements $E = \{e_1, \ldots, e_n\}$ and some sets $S_1, \ldots, S_m \subseteq E$ with non-negative weights $w_1, \ldots, w_m \in \mathbb{R}_{\geq 0}$. Our goal is to select a collection of sets S with minimum cost that covers all the elements, i.e. we should have $\bigcup_{S \in S} S_i = E$.

- 1. Write the natural integer programming relaxation for set cover and the corresponding relaxed linear program.
- 2. Prove that the probability a given element is covered by including each set S_i in S independently with probability x_i is at least 1 1/e.
- 3. Give a $O(\log n)$ approximation for set cover that works with probability at least 1 1/n.
- 4. Prove that the integrality gap of the LP for set cover is at least $(1 \epsilon) \ln n$ for every $\epsilon > 0$. **Hint:** Use a random instance.
- 5. (*Bonus question*) Give a deterministic construction with gap $\Omega(\log n)$.