
Advanced Algorithms

Lecture 9: Average Case Analysis
Lecturer: Nathan Klein

1 Recap

So far, we have focused on worst-case analysis, because we wanted to give algorithms that work on
all possible inputs.

While worst-case analysis is an important paradigm, often there is a divide between what
we can prove in the worst case and how algorithms perform in the real world. There are many
examples of massive instances of NP-Hard problems being solved in the real world, even to
optimality. To give a famous example, back in 2006, an instance of the traveling salesperson
problem (which is, remember, NP-Hard) with 85,900 cities was solved to optimality. Notably,
this instance was not somehow hand-crafted to ensure it could be solved: it arose from an actual
problem in chip design.

Figure 1: The 85,900 city instance solved in 2006.

This is not really something you would expect for an NP-Hard problem, right? We usually
hear things like: to solve a 100-city instance of the TSP, it would take a supercomputer thousands
of years. And that’s true if the supercomputer needs to do 2100 operations, which is roughly what
would be needed using the fastest exact algorithms today. And yet, here we are, having solved an
instance with 85,900 cities. So it’s reasonable to hope that for an average instance, things are much
better.

2 Average Case Analysis

Since we have focused quite a bit on Max Cut, we’re going to analyze Max Cut on random graphs.
Remember that the best known approximation algorithm for Max Cut is about 0.878, and it is
APX-Hard, so there is no PTAS unless P=NP.
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2.1 Erdös-Réyni Model

First, we need to define what a "random graph" actually is in our application. This is one of the
drawbacks of average case: often, it’s not clear what distribution real-world examples come from.
But we can still come up with reasonable average case models and prove things about them.

Definition 2.1 (G(n, p)). In an Erdös-Réyni random graph with n vertices and parameter p ∈ [0, 1],
denoted G(n, p), a graph with n vertices v1, . . . , vn is constructed adding each possible edge {vi, vj}
independently with probability p.

2.2 Average Case for Max Cut: Algorithm

For simplicity, we will focus on the case where p = 1
2 . However, similar results can be proved for

any value of p. For the next few lemmas, let G = (V, E) be drawn from G(n, 1
2 ).

First, let’s recall Hoeffding’s inequality from last class for binary random variables.

Theorem 2.2 (Hoeffding’s Inequality for Binary Random Variables). Let X1, . . . , Xn be mutually
independent binary random variables and X = ∑n

i=1 Xi, E [X] = µ. Then,

P [X− µ ≥ t] ≤ e
−2t2

n

P [|X− µ| ≥ t] ≤ 2e
−2t2

n

We can use this to show that the graph has about n2

4 edges with high probability.

Fact 2.3. The number of edges in G is at least n(n−1)
4 − n1.5 with probability at least 2e−4n.

Proof. The expected number of edges is 1
2 (

n
2) =

n(n−1)
4 . So, by Hoeffding,

P
[
|E| − µ ≤ −n1.5

]
≤ P

[
||E| − µ| ≥ n1.5

]
≤ 2e−2n3/(n2/2) = 2e−4n

We can now run our randomized 1
2 -approximation, which recall returned a cut with |E|/2

edges in expectation, or we can run a deterministic algorithm (from your homework) which will
always return a cut with at least |E|/2 edges.
Upshot: In polynomial time, we can obtain a cut with at least 1

2 (
n(n−1)

4 − n1.5) ≥ n2

8 − n1.5 =

( 1
8 −

1√
n )n

2 edges with probability 1− 2e−4n.

2.3 Average Case for Max Cut: Upper Bound

Now we will show that in fact the graph has no cut with more than n2

8 + n1.5 edges with high
probability.

Fact 2.4. For any set S ⊆ V,

E [|δ(S)|] ≤ n2

8
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Proof.

E [|δ(S)|] = ∑
e={vi ,vj}:i∈S,j 6∈S

P [e ∈ E] = |S||V r S|1
2
≤ n2

8

where in the inequality we use that max0≤k≤n k(n− k) = n2

2 .

Fact 2.5. For any set S ⊆ V,

P

[
|δ(S)| ≥ n2

8
+ εn2

]
≤ e−8ε2n2

Proof. |δ(S)| is the sum of independent Bernoulli random variables, so Hoeffding applies. Note
that the number of Bernoullis is |S||V r S| ≤ n2

4 .

P

[
|δ(S)| ≥ n2

8
+ εn2

]
≤ P

[
|δ(S)| − µ ≥ εn2] Since µ ≤ n2

8

≤ e−2ε2n4/(n2/4) ≤ e−8ε2n2

as claimed.

We can now employ the union bound to demonstrate that in fact all cuts do not exceed
( 1

8 + o(1))n2 edges with high probability. Remember the union bound:

Lemma 2.6 (Union Bound). Let A1, . . . , An be a collection of events. Then,

P

[
n⋃

i=1

Ai

]
≤

n

∑
i=1

P [Ai]

Lemma 2.7. The probability there exists a cut with more than ( 1
8 +

1√
n )n

2 edges is at most e−6n.

Proof. There are 2n sets S ⊆ V. Let AS be the event that |δ(S)| ≥ ( 1
8 +

1√
n )n

2 edges. By Fact 2.5,

where we set ε = 1√
n , P [Ai] ≤ e−8ε2n2

= e−8n. So, by the union bound,

P

[
exists a cut with more than (

1
8
+

1√
n
)n2 edges

]
= P

[ ⋃
S⊆V

Ai

]
≤ ∑

S⊆V
P [Ai] ≤ 2ne−8n

Therefore, we are overwhelmingly likely to see no cut with more than this many edges.

2.4 Approximation Guarantee

To obtain our result, we just need to put these two pieces together.

Theorem 2.8. The deterministic algorithm for Max Cut from the homework which returns a cut with at
least |E|/2 edges is a 1− o(1) approximation with probability at least 1− 2−n on G(n, 1

2 ). The randomized
algorithm for Max Cut from class is with probability 1− 2−n a randomized 1− o(1) approximation.
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Proof. Apply the union bound over the event that |E|2 ≤ ( 1
8 −

1√
n )n

2 and the event that no cut T

has |δ(T)| ≥ ( 1
8 +

1√
n )n

2. This implies with probability at least 1− 2−n, neither event occurs. In
this case, the approximation factor is at least:

( 1
8 −

1√
n )n

2

( 1
8 +

1√
n )n

2
= 1− o(1)

in particular, this is a 1−O( 1√
n ) approximation with probability at least 1− 2−n. Put another way,

for all but an exponentially small fraction of graphs, this is a 1− o(1) approximation.

2.5 Finding a Certificate

One slightly awkward thing about this algorithm is that we don’t know whether it worked. In the
TSP example, the solvers actually had to produce a proof (sometimes called certificate) that there
was no better solution.

So, one would hope that in this case you can also find a proof that there is no cut with value
more than ( 1

2 + o(1))|E| with high probability. That turns out to be true as well.

Definition 2.9 (Spectral Norm of a Matrix). Given a matrix A ∈ Rn×n, the spectral norm ‖A‖2 is its
largest singular value. If A is symmetric, this is equivalent to its largest eigenvalue in absolute value.

On the homework, you will prove the first part of the following fact. The second part follows
similarly.

Fact 2.10. For a symmetric matrix A,

λ1 = min
x 6=0,x∈Rn

xT Ax
xTx

‖A‖2 = max{|λi|} = max{|λ1|, |λn|} = max
x 6=0,x∈Rn

|xT Ax|
xTx

which implies that for all x ∈ Rn, we have

|xT Ax| ≤ ‖A‖2 · ‖x‖2

Recall for a graph with vertices v1, . . . , vn its adjacency matrix A ∈ {0, 1}n×n is a matrix where
Aij = 1 if there is an edge between vi and vj and 0 otherwise.

For a cut S ⊆ V, let 1S ∈ {0, 1}n be the vector for which 1i = 1 if vi ∈ S and 0 otherwise.

Fact 2.11.
1T

S A1VrS = |δ(S)|

Proof.
1T

S A1VrS = ∑
i,j∈[n]×[n]

AijI {vi ∈ S} I
{

vj 6∈ S
}
= |δ(S)|
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Lemma 2.12. Let G = (V, E) with adjacency matrix A. Let J be the matrix of all 1s. Then, where S is the
max cut of G:

|δ(S)| ≤ n2

8
+

n
2
‖A− J/2‖2

Proof.

|δ(S)| − n2

8
= 1T

S A1VrS −
n2

8
By Fact 2.11

≤ 1T
S (A− J/2)1VrS Since 1T

S J1VrS ≤ n2/4

Now, we can almost relate this back to the Rayleigh quotient, but we have a slight hiccup in that
we don’t have the same vector being multiplied on the left and right. We’ll prove the Rayleigh
quotient still applies in Corollary 2.15, so we get a bound on this of:

≤ ‖A− J/2‖2 · ‖1S‖2 · ‖1VrS‖2

≤ ‖A− J/2‖2 ·
√
|S|
√
|V r S|

≤ ‖A− J/2‖2 ·
n
2

Before we prove Corollary 2.15, let’s see how this enables us to finish the proof. First, we
will use the following matrix concentration bound. You can prove it by realizing that the sum
of a bunch of independent matrices concentrates similarly to the sum of independent random
variables. Unfortunately, we don’t quite have time to prove it in this class, although I encourage
you to check out Luca Trevisan’s course for more on this theorem1 and the field of average case
analysis.

Theorem 2.13 ([FK81]). With probability 1− o(1), for G ∼ G(n, 1
2 ), if A is the adjacency matrix of G,

‖A− J/2‖2 ≤ O(
√

n)

But the point is that we know we can compute the spectral norm in polynomial time, and with
high probability this spectral norm will be at most O(

√
n), meaning that we get a proven upper

bound of n2

8 + n1.5 with high probability.

Average Case for Max Cut

We have shown that almost all graphs are easy to solve Max Cut on. If you pick one at
random from the Erdös-Réyni model for p = 1

2 , you are going to be able to get essentially
an optimal solution in polynomial time as well as a proof that it’s near optimal. The
situation is similar for all values of p.

So, yes, the problem is APX-Hard. But the instances that you can’t get within a 1− o(1)
factor of optimality are very rare. In the real world, you are probably unlikely to encounter
them. However, be careful! Not all problems are like this, and again, it can be difficult
to even define a "random" instance. What is, for example, a random image found on the
internet? It is definitely not the result of randomly picking the color of each pixel, which
would be the natural analog of G(n, p).

1See Lecture 6.
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2.6 Extra Fact

Here we’ll show that it’s not a big deal that we are not multiplying by the same vector on the
lefthand side and righthand side in Lemma 2.12.

Lemma 2.14. Let A ∈ Rn×n be a symmetric matrix. Then for all x, y ∈ Rn with ‖x‖ = ‖y‖ = 1, we
have

|xT Ay| ≤ ‖A‖2

Proof. Notice that since A is symmetric, we have the identity:

xT Ay =
1
4
((x + y)T A(x + y)− (x− y)T A(x− y))

Now, we can apply Fact 2.10 to obtain

|xT Ay| = |1
4
((x + y)T A(x + y)− (x− y)T A(x− y))| ≤ 1

4
‖A‖2(‖x + y‖2 + ‖x− y‖2)

=
1
2
‖A‖2(‖x‖2 + ‖y‖2) = ‖A‖2

Corollary 2.15. Let A ∈ Rn×n be a symmetric matrix. Then for all x, y ∈ Rn,

|xT Ay| ≤ ‖x‖ · ‖y‖ · ‖A‖2

Proof. Apply the above lemma to the vectors x/‖x‖ and y/‖y‖ (if either has norm 0, the lemma
follows immediately) to obtain:

|xT Ay| = ‖x‖‖y‖ ·
∣∣ x
‖x‖

T
A

y
‖y‖

∣∣ ≤ ‖x‖ · ‖y‖ · ‖A‖2

References

[FK81] Z. Füredi and J. Komlós. “The eigenvalues of random symmetric matrices”. In: Com-
binatorica 1.3 (1981), pp. 233–241. issn: 1439-6912. doi: 10.1007/BF02579329 (cit. on
p. 5).

6

https://doi.org/10.1007/BF02579329

	Recap
	Average Case Analysis
	Erdös-Réyni Model
	Average Case for Max Cut: Algorithm
	Average Case for Max Cut: Upper Bound
	Approximation Guarantee
	Finding a Certificate
	Extra Fact


