
Advanced Algorithms

Lecture 7: Semidefinite Programming
Lecturer: Nathan Klein

1 Positive Semidefinite Matrices

1.1 Recap

Last class we explored the following max cut formulation:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. yuv = xuxv ∀u, v ∈ V
yvv = 1 ∀v ∈ V

Since the constraints yuv = xuxv were non-linear, we dropped those constraints and then tried to
find a separation oracle from the following initial polytope:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. yvv = 1 ∀v ∈ V

We noticed that constraints generated from the inequalities (∑v∈V cvxv)2 ≥ 0 (for some c ∈ RV) led
to some useful inequalities, such as yv ≥ −1 and yuv + yuw + yvw ≥ − 3

2 . Let’s remember what
"generated" means here by considering three variables u, v, w:

(xu + xv + xw)
2 ≥ 0 ⇐⇒ x2

u + x2
v + x2

w + 2xuxv + 2xuxw + 2xvxw ≥ 0

Now, replacing the squared terms with 1 and using yuv = xuxv, this is equivalent to yuv + yuw +
yvw ≥ − 3

2 . This says that we cannot cut all three edges in a triangle. So the question was: can we
separate over all constraints of the form (∑v∈V cvxv)2 ≥ 0?

1.2 Linear Algebra Recap

(∑v∈V cvxv)2 ≥ 0 is equivalent to 0 ≤ ∑u,v∈V cucvxuxv = ∑(u,v)∈V×V cucvyuv (where pairs u, v
appear twice with the understanding that yuv = yvu). But letting Y = (yuv)u,v∈V be a matrix, this
is equivalent to cTYc ≥ 0.

It’s reasonable for now to think of cTYc = ∑(u,v)∈V×V cucvyuv as the definition of cTYc. But
let’s also derive it for ourselves for general matrices.

Lemma 1.1. Let A ∈ Rn×n and x ∈ Rn. Then

xT Ax =
n

∑
i=1

n

∑
j=1

xixj Aij.

1

Proof. We have:

Ax =
n

∑
j=1

xj · (column j of A),

so each entry Aij gets multiplied by xj from the right. Adding in the left multiplication, we obtain:

xT(Ax) =
n

∑
i=1

xi · (row i of Ax),

so each entry in row i gets multiplied by xi from the left. Therefore each entry Aij gets multiplied
by xixj, and summing over all entries gives

xT Ax = ∑
i,j

xixj Aij.

Remember that λ ∈ R is an eigenvalue of matrix A ∈ Rn×n if there is a vector x ∈ Rn so that
Ax = λx. In this case, x is called an eigenvector of A and (x, λ) is an eigenvector, eigenvalue pair.

The criteria it turns out we want for Y is positive semidefiniteness. Remember that Y is
symmetric since we assume yuv = yvu.

Definition 1.2 (Positive Semidefinite). A symmetric matrix is positive semidefinite (PSD) if all of its
eigenvalues are non-negative.

To warm up a bit more with linear algebra, we will show in a second that this is equivalent to
asking that cTYc ≥ 0 for all c ∈ Rn. First, we need a key fact about symmetric matrices:

Theorem 1.3 (Spectral Theorem). Let A ∈ Rn×n be a symmetric matrix. Then, there are n eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn with corresponding orthonormal eigenvectors v1, . . . , vn so that

A =
n

∑
i=1

λivivT
i = VΛVT

where V has columns v1, . . . , vn (so VTV = I) and Λ is the diagonal matrix with Λii = λi.

Remember that a set of vectors v1, . . . , vn is orthonormal if for any i ̸= j we have ⟨vi, vj⟩ = 0,

and ∥vi∥2 = 1 (where recall for a vector v ∈ Rn, ∥v∥2 =
√

∑n
i=1 v2

i). These vectors v1, . . . , vn

therefore form a basis for Rn.
A nice consequence of the spectral theorem is that PSD matrices have square roots. We will

use this in the lecture.

Lemma 1.4. Let A be a PSD matrix. Then A has a PSD square root A1/2 (so that A1/2A1/2 = A).

Proof. Define A1/2 = ∑n
i=1 λ1/2

i vivT
i . Since λi ≥ 0 these square roots are real and so this matrix is

PSD (it is symmetric by definition). Now:

A1/2A1/2 = (
n

∑
i=1

λ1/2
i vivT

i)(
n

∑
i=1

λ1/2
i vivT

i) = ∑
i,j∈[n]×[n]

λ1/2
i λ1/2

j vivj =
n

∑
i=1

λivivT
i

where in the last equation we used that vivj = 0 for all i ̸= j.

2

Fact 1.5. A symmetric matrix A ∈ Rn×n has no negative eigenvalues if and only if xT Ax ≥ 0 for all
x ∈ Rn.

Proof. First assume A has no negative eigenvalues so that λi ≥ 0 for all i. Then:

xT Ax = xT(
n

∑
i=1

λivivT
i)x =

n

∑
i=1

λixTvivT
i x =

n

∑
i=1

λi(xTvi)
2 ≥ 0

For the other direction, assume xT Ax ≥ 0 for all x ∈ Rn. Then, A cannot have a negative
eigenvalue since for a negative eigenvalue v, we would have vT Av = vT(λv) = λ∥v∥2 < 0.

2 Semidefinite Programming

So: getting back to Max Cut, we want to design a separation oracle which given Y, either asserts
that it is PSD or returns a violated constraint. By the above, we now know all we need to do for
this is find the smallest eigenvalue, eigenvector pair λ1, v1. If λ1 ≥ 0, the matrix is PSD and we are
finished. Otherwise, λ1 < 0. But then vT

1 Yv1 = vT
1 (λ1v1) < 0, so this is a violated constraint, and

we can continue. Finding the smallest eigenvalue, eigenvector pair can be done in polynomial
time via, for example, the Cholesky Decomposition. So, we have a separation oracle.

The one catch is that there are some bit complexity issues here. To say we separate all
inequalities cTYc ≥ 0, we need to deal with some possibly pretty huge numbers in the vectors
c. So, in the end, we can only solve this up to some additive precision ϵ in time polynomial in
log(1/ϵ). This leads us to the following semidefinite program:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. (yuv)u,v∈V ⪰ 0

yvv = 1 ∀v ∈ V

Now comes the intuition behind this PSD criterion:

Second Moments

We want a distribution over the signs x ∈ {−1, 1}n, and instead of just looking at the first
moments of this distribution, i.e. E [x] (which is what an LP usually encodes), we are also
looking at the second moments, E

[
xxT]. And what do we know about E

[
xxT]? It must be

PSD, as for any distribution µ over x ∈ {−1, 1}n we must have:

cTE
[

xxT
]

c = cT(∑
y∼µ

P [y] yyT)c = ∑
y∼µ

P [y] (cTy)2 ≥ 0

Let’s see how to round a solution given the covariance matrix E
[
xxT]. Note that the covariance

matrix is technically the matrix E
[
(X − E [X])(X − E [X])T], we will be dealing with vectors with

E [X] = 0, so this is the same thing.

3

2.1 Rounding

Let’s continue with our usual relax-and-round framework. Given a solution Y = (yuv)u,v∈V , how
do we actually round it?

Lemma 2.1. Let r1, . . . , rn be independent Gaussians with mean 0 and variance 1. Then, the covariance
matrix of x = Y1/2r is Y.

Proof.
E
[

xxT
]
= E

[
Y1/2rrTY1/2

]
= Y1/2E

[
rrT

]
Y1/2 = Y

Unfortunately, x = Y1/2r will not be in {−1,+1}n. If we could somehow sample from µ, get
covariance matrix Y, and ensure x was in −1, 1, we would get a 1-approximation.

Fact 2.2. Let µ be a distribution over vectors in {−1,+1}n and suppose E [xuxv] = yuv for all u, v ∈ V.
Then, we obtain a 1-approximation.

Proof. By linearity of expectation, the expected cost of our algorithm is ∑{u,v}∈E
1
2 (1 − E [xuxv]) =

∑{u,v}∈E
1
2 (1 − yuv) which is the objective function of our LP.

So, just like when rounding LPs, we must lose something when we get an integer distribution.
What’s the most natural way to round in this setting?

It turns out the simplest idea works here. After sampling from our distribution µ over Rn with
covariance matrix Y, for each coordinate xi, let xi = 1 if xi ≥ 0 and −1 otherwise.

vα

vβ

θ

Figure 1: A visual proof that the regions in which the signs differ have total angle 2θ. In the solid
yellow region, both signs will be positive, and in the white region, both will be negative. The
remainder is the desired region with total angle 2θ.

First, let’s notice a few things about each variable xi.

Fact 2.3. E [xi] = 0, E
[
x2

i
]
= 1, and xi is a Gaussian for all i.

Proof. E [x] = E
[
Y1/2r

]
= Y1/2E [r] = 0 since E [r] = 0. E

[
x2

i
]
= Yii = 1. Finally, xi is a Gaussian

since xi = ∑n
j=1 Y1/2

ij rj, and the weighted sum of independent Gaussians is a Gaussian.

This will let us apply the following formula.

Lemma 2.4 (Sheppard’s Formula [She98]). Let α, β ∼ N (0, 1) be two (one-dimensional) correlated
Gaussians such that E [αβ] = ρ. Then, P [sign(α) ̸= sign(β)] =

arccos(ρ)
π .

4

Proof. (α, β) is a multivariate Gaussian with covariance matrix
[

1 ρ
ρ 1

]
and mean 0. This uniquely

defines the distribution. A standard way to sample a multivariate Gaussian with covariance matrix
C is to sample r where each ri ∼ N (0, 1) independently and then output C1/2r. We have already
noticed this produces the desired covariance matrix.

Now, let vα be the first row of C1/2 and vβ the second. Then, α = ⟨vα, r⟩ and β = ⟨vβ, r⟩. α will
be positive if the angle between vα and r is in the range [−π

2 , π
2] and similarly for β. The angle of

r is uniformly random because r is a Gaussian (this is the only time we use this). So, the signs
will be different according to Fig. 1, with probability equal to to twice the angle between vα and
vβ divided by 2π. Now:

ρ = ⟨vα, vβ⟩ = ∥vα∥∥vβ∥ cos(θ) = cos(θ),

where in the first equality we used that the covariance matrix is as above. This completes the
proof.

We can now use this to finish the proof. We will use the following computational lemma,
which we sketch by picture (see Fig. 2):

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

≈ 0.74

≈ 0.84 1
π arccos(ρ)

1
2 (1 − ρ)

Figure 2: This can be verified mathematically, but one can check that the largest deviation occurs
at approximately −0.689 and has a ratio of approximately 0.878.

Lemma 2.5. For ρ ∈ [−1, 1], we have

arccos(ρ)
π

≥ 0.878 · 1
2
(1 − ρ)

But now we’re done, as the expected number of edges cut is (by linearity of expectation):

E [|δ(S)|] = ∑
{u,v}∈E

arccos(yuv)

π
≥ 0.878 · ∑

{u,v}∈E

1
2
(1 − yuv) = 0.878

As mentioned, this is also the integrality gap and this ratio can’t be improved unless the Unique
Games Conjecture is false [Kho+07].

5

References

[Kho+07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. “Optimal Inap-
proximability Results for MAX-CUT and Other 2-Variable CSPs?” In: SIAM Journal
on Computing 37.1 (2007), pp. 319–357. doi: 10.1137/S0097539705447372. eprint:
https://doi.org/10.1137/S0097539705447372 (cit. on p. 5).

[She98] W. F. Sheppard. “On the Application of the Theory of Error to Cases of Normal
Distribution and Normal Correlation”. In: Philosophical Transactions of the Royal Society
A 192 (1898), pp. 101–167. doi: 10.1098/RSTA.1899.0003 (cit. on p. 4).

6

https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1098/RSTA.1899.0003

	Positive Semidefinite Matrices
	Recap
	Linear Algebra Recap

	Semidefinite Programming
	Rounding

