
Advanced Algorithms

Lecture 6: Randomness, Max Cut, and Non-linear Constraints
Lecturer: Nathan Klein

1 Max Cut

In the Max Cut problem, we are given a graph G = (V, E) and we want to find a set S ⊆ V so
that |δ(S)| is maximized.

1.1 Expectation

Remember given a discrete sample space Ω with a probability function P : 2Ω → [0, 1] (i.e. from
subsets of Ω to [0, 1]), a random variable is a function X : Ω → R and its expectation E [X] is
computed:

E [X] = ∑
ω∈Ω

P [ω] X(ω)

Where supp(X) is the set of numbers in R with P [X = x] > 0, one can show:

E [X] = ∑
x∈supp(X)

x · P [X = x]

A key fact about expectation is as follows:

Lemma 1.1 (Linearity of Expectation). For any collection of random variables X1, . . . , Xn,

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E [Xi]

Proof.

E

[
n

∑
i=1

Xi

]
= ∑

ω∈Ω
P [ω]

n

∑
i=1

Xi(ω) =
n

∑
i=1

∑
ω∈Ω

P [ω] Xi(ω) =
n

∑
i=1

E [Xi]

1.2 Simple Approximations for Max Cut

My favorite 1
2 approximation for Max Cut is the following randomized algorithm: construct S by

letting v ∈ S with probability 1
2 independently for every vertex v.

Lemma 1.2. For every edge e, P [e ∈ δ(S)] ≥ 1
2 .

Proof.

P [e ∈ δ(S)] = P [u ∈ S, v ̸∈ S] + P [u ̸∈ S, v ∈ S]

= P [u ∈ S]P [v ̸∈ S] + P [u ̸∈ S]P [v ∈ S] =
1
4
+

1
4
=

1
2

where we used that the events v ∈ S and u ∈ S are independent.

1

So, we can show:

Lemma 1.3. Where S is the random set produced by the algorithm and OPT is the number of edges in the
optimal cut,

E [δ(S)] ≥ 1
2

OPT

Proof. Let Xe be a random variable indicating if e ∈ δ(S). Then |δ(S)| = ∑e∈E Xe. So:

E [|δ(S)|] = E

[
∑
e∈E

Xe

]
= ∑

e∈E
E [Xe] By Linearity of Expectation

= ∑
e∈E

1
2
=

1
2
|E| By Lemma 1.2

≤ 1
2

OPT

since certainly OPT cuts at most every edge!

This is what is called a randomized 1
2 approximation, because it produces a cut of size at least

1
2OPT in expectation. In most settings, a randomized α approximation is considered just as good
as a deterministic one because we can run it many times and with high probability one will be
close to the guaranteed α factor.

1.3 LP for Max Cut

It’s reasonable to now try to construct an LP which will improve upon this 1
2 approximation. Here

is the natural idea: if xv ∈ {0, 1} encodes whether v ∈ S, you need to encode that y{u,v} (the
indicator of whether {u, v} ∈ δ(S)) has the property y{u,v} ≤ |xu − xv|. You can do so as follows.
Here is the ILP:

max ∑
{u,v}∈E

y{u,v}

s.t. y{u,v} ≤ xu + xv ∀e = {u, v} ∈ E

y{u,v} ≤ 2 − xu − xv ∀e = {u, v} ∈ E

xv ∈ {0, 1} ∀v ∈ V
y{u,v} ∈ {0, 1} ∀{u, v} ∈ E

(1)

Now, unfortunately, when we relax it to an LP (replacing the integrality constraints with lower
and upper bounds), it an integrality gap of 1

2 . The reason is that setting xv = 1
2 for all v ∈ V and

y{u,v} = 1 for all e ∈ E is always feasible. So, the LP will always report a value of |E|, which is
completely trivial!

1.4 Nonlinear Constraints

Instead of using |xu − xv| to be the function which tells us whether {u, v} is cut, we could try
something else. Suppose we instead let xv = 1 if v ∈ S and xv = −1 otherwise. Now, instead of
the constraints above on y{u,v}, let’s replace it with a non-linear constraint: yuv = xuxv, where

2

for ease of notation I’ll drop the brackets in y{u,v}. This gives us the following program with
non-linear constraints:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. yuv = xuxv ∀u, v ∈ V
xv ∈ {−1, 1} ∀v ∈ V

Here’s another way to write the same program:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. yuv = xuxv ∀u, v ∈ V
yvv = 1 ∀v ∈ V

This is equivalent since yvv = x2
v = 1 if and only if xv ∈ {−1, 1}. What’s interesting now is that

there is only one problematic set of constraints: yuv = xuxv, and we don’t have to worry about the
integer versus linear program aspect.

1.5 Solving this Program

This is simply not a linear program, so what are we supposed to do? Let’s just delete the
constraint yuv = xuxv, solve the LP, and hope we can implement a separation oracle. Of course,
we’ll fail, because solving this program is equivalent to solving Max Cut and is therefore NP-Hard.
But maybe we can get close. So here’s the new LP:

max ∑
{u,v}∈E

1
2
(1 − yuv)

s.t. yvv = 1 ∀v ∈ V

This is a bit odd: now the yuv values are unconstrained. So the LP can return, for example,
yuv = −1000 for all yuv and still set yvv = 1 for all v ∈ V. This will have a huge objective value.

But it’s easy to refute these values, since we know that it must be the case that yuv = xuxv
for some xu, xv with x2

u = x2
v = 1. Remember, we’re trying to be the separation oracle ourselves.

How can we prove that yuv = −1000 is not a valid solution using a linear constraint over the yuv
variables?

You might say, well, it’s obvious: it needs to be the case that −1 ≤ yuv ≤ 1, since that’s true of
an integral solution. But since we want to automate this process with a separation oracle, let’s try
to figure out how you would prove that formally. If you play around a little bit, you might notice
that you can use the inequality (xu + xv)2 ≥ 0, which is just a true mathematical fact. Writing it
out, we get

0 ≤ (xu + xv)
2 = x2

u + x2
v + 2xuxv = 2 + 2yuv

where we used that yvv = 1 for all v ∈ V. Rewriting this, our first inequality says yuv ≥ −1. So if
we throw in these constraints, at least our LP now can get at most value |E|.

So, we continue. Now maybe the LP returns a solution which sets yuv = −1 for all edges in a
triangle u, v, w. This is obviously wrong, so let’s see if we can refute this in a similar fashion. The

3

first thing we might try is the following:

(xu + xv + xw)
2 ≥ 0

Which, expanded and replacing squared terms with 1 is:

3 + 2xuxv + 2xvxw + 2xuxw ≥ 0

Which is a refutation, giving us yuv + yvw + yuw ≥ − 3
2 . Note that this says the objective value of a

triangle is at most 3
2 −

1
2 (yuv + yvw + yuw) ≤ 3

2 +
1
2 ·

3
2 = 9

4 .
Now notice that all of our separating hyperplanes so far (which are linear in yuv) have

originated from inequalities like (∑v∈V cvxv)2 ≥ 0 for some c ∈ Rn. Can we capture all such
inequalities and automate this? In the next class we will show the answer is yes.

Before we go, notice that (∑v∈V cvxv)2 ≥ 0 is equivalent to 0 ≤ ∑u,v∈V cucvxuxv = ∑u,v∈V cucvyuv
(where pairs u, v appear twice). But letting Y = (yuv)u,v∈V , this is simply saying that cTYc ≥ 0.
This is exactly asking that Y is a positive semi-definite matrix.

In the next class, we will show Goemans and Williamson [GW95] used a solution y which
obeys all such constraints to design an approximation algorithm for Max Cut with ratio about
0.878.

References

[GW95] Michel X. Goemans and David P. Williamson. “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming”. In: J. ACM
42.6 (Nov. 1995), pp. 1115–1145 (cit. on p. 4).

4

	Max Cut
	Expectation
	Simple Approximations for Max Cut
	LP for Max Cut
	Nonlinear Constraints
	Solving this Program

