Advanced Algorithms

Lecture 4: Convex Geometry and Unrelated Parallel Machines

Lecturer: Nathan Klein

1 A Polyhedral View of Relax-and-Round

Remember the relax and round framework we studied last time.
Relax and Round
As input we get a discrete optimization problem O. Now, we:

1. Model O as an Integer Linear Program (ILP): linear constraints with the requirement
that the solution x is integer.

2. Relax the condition to x € R", giving us a Linear Program (LP). Solve the resulting
LP using the ellipsoid method to obtain a solution x.

3. Round the point x to a solution to O.

It is convenient to think about the ILP and the LP as producing solutions to optimization
problems over convex polyhedra.

Definition 1.1 (Convex Polyhedron/Polytope). A convex polyhedron is the intersection of finitely many
half-spaces of the form a’x > b fora € R",b € R. A convex polytope is a bounded convex polyhedron. See
Fig. 1.

Figure 1: On the left is a convex polyhedron defined by two half-planes, and on the right is a
convex polytope defined by four half-planes.

Thus, the set of linear constraints for any ILP form a polyhedron (or a polytope), as do the set
of all constraints for an LP. We can therefore think of an ILP/LP pair as follows. First, define a
polyhedron P with a separation oracle. Then, the ILP (left) and LP (right) are:

min ¢(x) min ¢(x)
st. x&P st. xeP
xeZ" x € R"

This highlights the importance of the integrality gap: it gives us the largest possible difference
between integer points and real points in a polyhedron. So really, integrality gap is defined with
respect to a polyhedron.

Here is an example of the relax-and-round framework geometrically. Suppose the marked
points in Z? are the feasible solutions to our optimization problem O. Then the blue polytope P is
a valid ILP for the problem since P N Z? is the set of feasible solutions for O.

Figure 2: In purple is a polytope P with a separation oracle. In red is the convex hull of the integer
coordinates in that polytope. The ILP returns an optimal vertex of the red set. The relaxed LP
returns an optimal vertex of the purple set. The integrality gap measures how different these two
vertices can be in terms of cost.

If we could find a separation oracle for the red convex set for an NP-Hard problem, we would
prove P=NP. So, such a thing likely does not exist, and we have to settle for approximations of the
red polytope. Let’s redefine the relax-and-round framework with our new language:

Relax and Round: Polyhedral Version
As input we get an instance of a discrete optimization problem O. Now, we:

1. Find a polyhedron P with a polynomial time separation oracle such that P N Z" is the
set of feasible solutions to O.

2. Relax our problem: use the ellipsoid method to find an optimal vertex x € R" in P.

3. Round the point x to a solution to O.

There are many choices for P, and as we saw in the last lecture, often the most natural choice
can be strengthened with additional inequalities. We will explore this further in later lectures.

Notice that in Fig. 2 and in the above definition I say we find an optimal vertex. This is because
given a polyhedron, if we optimize in any direction, an optimal solution (so long as it is finite)
will always be attained at some vertex of that set.

Definition 1.2 (Vertex). Given a polyhedron P, a point v € P is a vertex of P if and only if there is no
direction 0 # d € R" such that v+d € Pandv —d € P.

A nice property of polytopes is the following:

Theorem 1.3 (Carathéodory’s Theorem). Let x lie in the convex hull of a set S C IR"™. Then x can be
written as the convex combination of at most n 4 1 points of S.

It also gives the following fact immediately:
Fact 1.4. The optimum value of an LP can always be attained at a vertex.

Proof. Let a € P be an optimal solution. By Carathéodory, we can write a as a convex combination
of vertices. So some vertex has cost at most that of a. O

2 Structure of Vertices

By the above, the optimal solution is always attained at a vertex. The algorithms for LPs we will
consider in this course always obtain a vertex solution, which are often called extreme points in
the convex of an LP. It turns out that extreme points often have robust structure which can lead to
powerful algorithms. The reason for this structure is some basic linear algebra.

Lemma 2.1. Let P = {x € R" | Ax > b} be a polyhedron for A € R™ " and b € R™. Then, the
following are equivalent given a point y € P:

(1) y is a vertex of P, meaning there is no direction d € R", d # 0, such that y+d € Pandy —d € P.

(2) There is a subsystem A, b of n linearly independent constraints defining P such that y is the unique
solution to the equation system Ax = b.

Proof. Consider the submatrix A consisting of the tight constraints at y so that Ay = b where b is
the set of righthand sides.
Suppose (1) does not hold. Then there exists d # 0 such that y +d € Pand y —d € P.
Therefore:
b<A(y+d)=Ay+Ad=0b+ Ad

which implies Ad > 0. We can similarly derive A(—d) > 0, meaning Ad =0.So, d # 0 is in the
kernel of A implying that its rank is less than 7. So (2) cannot hold, meaning (1) implies (2).
Similarly suppose (2) does not hold. Then, A has rank less than 7, as otherwise we could
pick n linearly independent constraints and satisfy (2). So it has a non-trivial kernel: there exists
d € R" such that Ad = 0. This implies that for some € > 0 we have y + ed,y — ed € P since both
points satisfy all tight constraints at y and by taking e small enough we do not violate any of the
constraints that were not already tight. So, (2) implies (1). O

Summarizing the above two sections:

Finding a Vertex in Polynomial Time

For any linear program over a convex polytope with a polynomial time separation oracle,
we can find an optimal solution y in polynomial time that is also the unique solution to a
subsystem of n linearly independent constraints met with equality, Ax = b.

You can replace polytope with polyhedron as long as the LP has a finite optimum, but in this
course we will always deal with polytopes since we will have the constraints 0 < x; <1 for all
variables i.

3 Minimizing the Makespan on Unrelated Parallel Machines

We will use our new understanding of the structure of vertices to give a 2-approximation to the
problem of minimizing the makespan on unrelated parallel machines, work of Lenstra, Shmoys,
and Tardos [LST90].

As input, we are given n machines and m jobs. Each machine i takes time p;; to process job j.
We now want to process all jobs in the minimum amount of time T. This is called minimizing the
makespan. Notice that we cannot split a job up between different machines.

Let’s design an LP. Here's a first guess, where x;; is the relaxed indicator variable of whether
machine i process job j:

min T
n

st Y xj=1 Vi<j<m
i=1
m
Y pixii <T Vi<i<n
j=1

The first constraint says every job should be processed once. The second constraint says no
machine should run for more than T steps, the objective function.

Unfortunately, this LP has an integrality gap of n. If our input is a single job, and all machines
have p;; = 1, we can split up the job n ways to obtain T = 1/n. But clearly the optimal T is 1. To
fix this, we ensure that no single job is larger than T, to obtain the following feasibility problem:

Yigxj=1 Vi<j<m

Y piyxi <T V1<i<nm

xij =0 Vi,jlpj=T
0<x;<1 Vi<i<nl1l<j<m

T —
PUPM -

Of course, we don’t know T off the bat. So, we will run binary search to find the smallest T,
T*, for which ng M s non-empty.

It turns out that this new LP has an integrality gap of 2, and leads to a 2-approximation. Let’s
prove it using sparsity. First, let’s obtain a vertex x of P}, for our optimal T*. The following is
our main sparsity fact, which is a consequence of the fact that there are far more variables than
"nontrivial" constraints. It says that most variables must be set to 0 or 1!

Fact 3.1. Any vertex x € Plj,, has at most n + m variables for which 0 < x;; < 1.

Proof. We have nm variables, so by Lemma 2.1, there exists a collection of nm constraints met
with equality uniquely defining x. There are n + m constraints that are not of the form x;; = 0 or
xjj = 1. Therefore, nm — n — m constraints must be setting variables to 0 or 1, giving the claim. [

Now consider a bipartite graph G with lefthand side [n], the machines, and righthand side [m],
the jobs. Create an edge between machine i and job j for every 0 < x;; < 1. We may assume that
the graph is a single connected component, as otherwise our LP splits into two disjoint instances
that we can solve separately.1 But now, we have n + m vertices, at most n + m edges, and the
graph is connected. In other words:

Fact 3.2. Any connected component of G is a tree plus at most one edge.

1By restricting the LP to each connected component we can show each component forms an extreme point solution
to the resulting restricted problem.

All jobs have degree at least 2. So, all leaves are machines. We will now assign jobs to machines
so that every machine gets at most one additional job. This would prove that we have a makespan
of 2T*, since every machine so far has only been assigned jobs with x;; = 1 and every edge that
exists has p;; < T*.

Iteratively find a machine that is a leaf, and assign it the unique job it’s adjacent to. Then
delete the machine and the assigned job. In this way, we can never create a leaf which is a job, as
jobs either are deleted or their degree does not change via this process. Ultimately, we are left
with no leaves, and we have some n’ 4+ m’ vertices and at most n’ + m’ edges since we always
delete two vertices and at least two edges. The only possibility is that there are no vertices left (in
which case we are done) or the graph is a cycle, and the length of that cycle is even since G is
bipartite. Find a perfect matching in this cycle to assign every job to one machine (and vice versa).
This demonstrates that our makespan is at most 2T™*.

Unfortunately, this LP cannot do better than 2.

Fact 3.3. The analysis of this algorithm cannot be improved. (The "feasibility gap” of this collection of LPs
is 2.)

Proof. Create one "personal” job i for each machine i, assigning p;; = n — 1 for each such job and
pii = 100n for all other machines 7'.
Finally, create one "big" job b with p;, = n on all machines i. In this way there are n + 1 jobs.
A feasible LP solution for T* = n is to assign all n — 1 personal jobs to their machines, and then
split the final job b up with x;; = 1/n for all machines j. In this way the LP has makespan n.
However, clearly OPT is 2n — 1, since every personal job must be assigned to that machine to
have makespan below 1001, and the big job must go somewhere. O

A major open question is whether a better-than-2 approximation can be designed for this
problem.

References

[LST90] Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. “Approximation algorithms for
scheduling unrelated parallel machines”. In: Mathematical Programming 46.1 (1990),
pp- 259-271. 1ssN: 1436-4646. por: 10.1007/BF01685745 (cit. on p. 3).

https://doi.org/10.1007/BF01585745

	A Polyhedral View of Relax-and-Round
	Structure of Vertices
	Minimizing the Makespan on Unrelated Parallel Machines

