
Advanced Algorithms

Lecture 25: The Price of Anarchy
Lecturer: Nathan Klein

1 The Price of Anarchy

Last lecture, we looked at pure and mixed Nash equilibria. We saw some examples where the
Nash equilibrium is not the best overall solution for the players: in particular, this was the case for
the Prisoner’s Dilemma and the similar hockey helmet problem.

Confess Don’t Confess
Confess (2, 2) (5, 0)

Don’t Confess (0, 5) (3, 3)

Table 1: Payoff matrix for the prisoner’s dilemma.

In particular, there was a pure Nash here in which both players confess. However it would be
in both of their interests to try to achieve the solution (2,2). In general, we may be interested in
studying the social welfare of Nash equilibria, and comparing them to solutions which maximize
the social welfare.

Social welfare in this lecture will simply be the sum of the expected utilities for a Nash
equilibrium. Given a Nash Q or any assignment of strategies to players Q, let w(Q) be the social
welfare of that assignment. We assume social welfare is always positive.

Definition 1.1 (Price of Anarchy). The price of anarchy in a game G with a social welfare function w
and set of Nash equilibria E is the value of:

Price-of-Anarchy(G) = min
Q∈E

w(Q)

w(OPT)

where OPT is the strategy assignment that maximizes the social welfare.

This is called the price of anarchy (PoA) because it measures the largest deviation of social
welfare when comparing top-down solutions and "anarchy," the states that the game can reach
without outside influence. For the prisoner’s dilemma payoff matrix above, the PoA is 2

3 , because
the only Nash has welfare 4 and OPT has welfare 6. If a scenario has a PoA of significantly below
1, it indicates that it is beneficial for some kind of top-down solution to be imposed. In the hockey
example, the PoA was significant enough that a rule was imposed, causing the equilibrium to
shift to everyone wearing helmets.

A similar concept is the price of stability, which measures the price of the best Nash.

Definition 1.2 (Price of Stability). The price of stability in a game G with a social welfare function w and
set of Nash equilibria E is the value of:

Price-of-Stability(G) = max
Q∈E

w(Q)

w(OPT)

where OPT is the strategy assignment that maximizes the social welfare.
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In the prisoner’s dilemma, these two notions are the same as there is a unique Nash. However
in some settings there are many equilibria. Here, you can imagine an outside force may be able
to encourage the best equilibrium, and then the system will stay there on its own. For example,
consider the following variation of the prisoner’s dilemma where if neither player confesses, they
get zero years in jail (so a high utility of 5) because the police can’t prove anything, and they get a
light sentence if they confess and the other player does not:

Confess Don’t Confess
Confess (2, 2) (4, 0)

Don’t Confess (0, 4) (5, 5)

Table 2: Payoff matrix for the modified prisoner’s dilemma.

Here there are two Nash equilibria: in the first, both players confess, and in the second, both
players don’t confess. The optimal social welfare is for both players not to confess, which is one of
the equilibria. The price of anarchy is 2

5 , since the worst Nash has welfare 4 and OPT is 10. The
price of stability, on the other hand, is 1, because the best equilibrium is OPT itself.

And indeed, in this situation the price of stability looks like a good proxy for how rational
players would act. If both players know this is the payoff matrix, there is a high likelihood they
will individually both decide not to confess (versus the previous matrix, which would probably
lead to confession).

1.1 n Player Games and Flows

We will study n player games in this lecture. As in the two player case, each player has a set of
possible actions and may pick a distribution over those actions. The result is a distribution over
assignments of strategies Q. The game gives us a function (a generalization of a payoff matrix)
which gives us the utility of each player at an assignment Q which we can use to compute w(Q),
the sum of expected utilities or the social welfare.

In particular, we will study congestion games, and in particular the special case of flows from s
to t. Here we have a directed graph with a marked starting point s and a destination t. As this
will model the flow of traffic between two points, we will assume the number of players n is very
large. In this way, we can assume every player has a single strategy and not a distribution over
strategies, as if a player chooses a distribution over paths we can instead think of splitting that
player into multiple players, each with a deterministic choice.

This allows us to think of an assignment Q as simply a set of directed s − t paths, where Qe
is the percentage of players who travel on arc e in their path. Therefore, any distribution over
strategies Q can be mapped to a feasible flow f from s to t, where fe = Qe. This means we have
a flow f ∈ RE

≥0 which obeys flow constraints. Namely, for each vertex v ∈ V ∖ {s, t} we have
f (δ+(v)) = f (δ−(v)) (flow conservation) and for s, we have f (δ+(s)) = 1.

Furthermore, given a flow f we can determine a corresponding strategy by decomposing
it into paths and assigning a corresponding percentage of players to each path. So, these are
equivalent.
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1.2 Congestion Games

It remains to define the utility function (and therefore welfare) of an assignment Q, or equivalently,
a flow f ∈ RE

≥0. For every arc e, we can define the congestion on that arc, which will be a function
of the number of players using it. In particular:

ce(x) = αex + ℓe

where α, ℓ ∈ RE
≥0 correspond to arc-specific quantities: ℓe is the length of arc e, or the time to

travel on it when there are no other cars, and αe measures the slowdown when usage on the arc is
high. For example, αe may roughly encode the inverse of the width of the road: roads with many
lanes are not as impacted by high usage.

Our goal is to minimize the overall travel time. This is given by ∑e∈E fe · ce( fe). However, here
it doesn’t quite make sense to use a welfare function, since we want to minimize this quantity
instead of maximize it. Instead we want to use a "social cost" function, which will be exactly

cost( f ) = ∑
e∈E

fe · ce( fe)

There is then an analogous price of anarchy for a graph G with respect to social cost given a set of
equilibria E, here represented as flows:

Price-of-Anarchy(G) = max
f∈E

cost( f )
cost(OPT)

where OPT is the flow minimizing the overall travel time. In this setting, the lower the PoA, the
better the Nash equilibria are. We can similarly define the price of stability (PoS).

Lemma 1.3. A flow is a Nash equilibrium if and only if for all paths P from s to t supported by f ,
∑e∈P ce( fe) is minimal among all s-t paths.

This is immediate, as by definition it means no player wants to deviate from their path. It
crucially uses that we think of each player as having no impact themselves on the network’s
congestion, which is justified by our assumption that the number of players is large (n → ∞).

1.3 Braess’ Paradox
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Figure 1: An illustration of Braess’ paradox. Here the congestion function on the edges with label
1 is constant: ce(x) = 1, and similarly for the 0 edge ce(x) = 0. On the other edges, ce(x) = x.

To familiarize ourselves with this setup, we will investigate a surprising phenomenon known
as Braess’ paradox seen in Fig. 1. Let’s compute the Nash equilibria for each graph. In the left
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graph, the flow will clearly just split: we will send half the flow on the top half and half on the
bottom. Here no one has an incentive to deviate. In this way all paths have length 1.5, and the
social cost is 1.5.

What about the right graph? The optimum solution is the same as the left graph and has social
cost 1.5 again. But this is not the Nash! The Nash will be to put all the flow on the edges with
congestion function x for a total social cost of 2. This is because the edges with function x will
always be no more congested than the edges with constant congestion of 1, so any greedy player
will pick the edges with label x. So this is a Nash, and clearly it is the only Nash, leading to a
PoA and PoS of 4

3 in the right graph.
This feels paradoxical because by adding a road to the network, we actually make the congestion

worse. This goes against our intuition, since in any network, adding edges only reduces the cost of
the optimal solution. Braess’ paradox demonstrates that the same is not true for Nash equilibria.

A corollary in the real world might be that in some situations, you might solve traffic problems
by removing roads or lanes instead of adding them. Counter-intuitive, but true!

1.4 Bounding the Price of Anarchy

It turns out that this is the worst case PoA over all graphs: no graph has PoA greater than 4
3 .1 The

key fact is as follows:

Fact 1.4. Define a new congestion function c′e(x) = 2αex + ℓe, where recall ce(x) = αex + ℓe. Then any
flow f is optimal for c if and only if it is a Nash for c′.

Proof. First we will show that if f is optimal for c, it is a Nash for c′. Suppose it is not a Nash for
c′. Then for some path P supported by f and some P′, we have:

∑
e∈P′

2αe fe + ℓe < ∑
e∈P

2αe fe + ℓe

But this shows a direction in which f can move to reduce its cost in c. To see this, let’s examine
the derivatives of the social cost function, which recall is:

c( f ) = ∑
e∈E

fe(αe fe + ℓe) = ∑
e∈E

αe f 2
e + ℓe fe

So the derivative in each direction fe is

∂c
∂ fe

=
∂αe f 2

e + ℓe fe

∂ fe
= 2αe fe + ℓe

Now, consider the directional derivative in the direction d which is +1 in the direction of the path
P′ and −1 in the direction of the path P. This is a valid direction as it respects flow conservation
and P is supported by f . Then:

∇dc( f ) = ∑
e∈P′

(2αe fe + ℓe)− ∑
e∈P

(2αe fe + ℓe) < 0

using the earlier inequality, which is a contradiction with the optimality of f for c. The other
direction is similar and we leave it as an exercise to verify.

1We follow the proof outline given in these lecture notes by Mądry.
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Theorem 1.5. The price of anarchy in any graph is at most 4
3 .

Proof. Let f be a Nash on G. Create a new graph G′ which is identical to G except it has two
copies of every edge. We will extend the congestion function to G′ so that the first copy of each
edge e will have cost function ce, and the second copy e′ will have ce′(x) = ce( fe) so that αe′ = 0
and ℓe′ = ce( fe).

Note that f is a Nash in G′ with extended congestion function c, as there is no reason for any
flow to use a copy of an edge. But now, consider a new flow g in G′ so that ge =

1
2 fe and ge′ =

1
2 fe.

Now, it turns out that g is optimal in G′ by Fact 1.4.
To argue this, we need to demonstrate that it is a Nash with respect to the cost function

c′e(x) = 2αex + ℓe and then apply the fact on G′ with c and c′. This follows from the fact that the
congestion c′e(g) at any edge is equal to ce( f ), since for any original edge e we have:

c′e(g) = 2αe( fe/2) + ℓe = ce( fe)

and for any copied edge e′ we have:
c′e′(g) = ce( fe)

So g is an optimal solution in G′. However, clearly the OPT in G′ is at most the OPT in G since we
have only added links. So:

OPT(G) ≥ OPT(G′) = c(g) = ∑
e∈E

(αe

(
fe

2

)2

+
fe

2
ℓe +

fe

2
ce( fe))

= ∑
e∈E

αe
3
4

f 2
e + feℓe ≥

3
4

c( f )

Or in other words, the Nash divided by OPT is at most 4
3 , as desired.
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