Advanced Algorithms

Lecture 2: Greedy and Dynamic Programming for
Approximation Algorithms

Lecturer: Nathan Klein

1 Knapsack

In the knapsack problem, we have a knapsack that can carry an integer weight up to W. In front
of us is a set of items 1, ...,n. Each item i has a positive integer weight w; and a positive integer
value v;. Our goal is to take the highest value set of items which has total weight at most W. We’ll
assume that every item has weight at most W, as otherwise we can never take it.

It turns out this problem is NP-Hard. This lecture, we'll look at approximation algorithms
for it to figure out where in the hierarchy of approximability it lies. We’ll explore both a greedy
algorithm and a dynamic programming algorithm. These algorithmic strategies are powerful for
solving problems in P, so no surprise that they help us design approximation algorithms too.

1.1 A Greedy Algorithm for Knapsack

The natural thing to try is to repeatedly take the item which maximizes _', i.e., has the best weight
to value ratio, and fits in the knapsack. Unfortunately this can be an arb1trar1ly bad approximation.
Consider the 2 item instance where item 1 has w1 = 1,v1 =1+ ¢, and item 2 has wy = v, = W.
Then this algorithm will only take item 1, but you could have taken item 2, meaning greedy has
no constant factor approximation ratio. So this doesn’t work.

It turns out, though, that a seemingly trivial modification fixes it. Let’s say greedy took items
1,...,k, where WLOG the items are sorted by their ratio ;-. Then, the fix is to either return
{1 ..., k} or {k+ 1}, whichever is better. Let’s call this ”two ch01ce greedy."

Lemma 1.1. Two-choice greedy is a 3-approximation.

Proof. We need to argue that v +v({1,...,k}) > OPT. If this is true, then we’re done as it
implies one of the solutions we consider is at least JOPT.

Let’s consider a stronger OPT’ that has a larger knapsack of weight w({1,...,k+1}) > W.
Then, it can get value vy 1 +v({1,...,k}). But it cannot do any better, as this solution has the
best possible ratio of value to weight, and completely fills the knapsack, implying it has the best
possible value. Finally, clearly OPT’ > OPT, which completes the proof. O

1.2 A Dynamic Program for Knapsack

It turns out that there is a simple dynamic programming algorithm that solves knapsack exactly.
So, P=NP. (OK, clearly not, but try to figure out why not while we discuss this.) Remember in
dynamic programming the goal is to define a collection of subproblems so that any subproblem
can be solved quickly if you know the solution to the others. Given a knapsack input with items
[n], we will have just n subproblems Aj, ..., A,.

Subproblem A; will store the weights and values of possible solutions on items 1,...,i. In
particular, A; will consist of a set of all pairs (w, v) for w,v € Z>1, w < W, for which there exists

a solution of weight w and value v on items 1,...,i. Therefore, |A;| < WV where V is the value
of the optimal solution.

Alright. So, Ay just has one pair, (0,0). Now, inductively assume we have A;_1, and let’s try
to compute A;. Well, it’s easy, right? For every (w,v) € A;_1, we add (w,v) to A;, and we also
add (w + w;, v+ ;) if w+w; <W.

Finally, to get the answer, we just look through every element in A;, check which has the best
value, and return that.

It’s pretty intuitive, but let’s prove that the algorithm is correct.

Lemma 1.2. The above dynamic programming algorithm computes the value of the optimal solution.

Proof. We will prove by induction that A; contains all feasible pairs (w, v) for all possible sets of
items in {1,...,i}. This means that when we scan through A,, we will return the optimal value.

The base case holds. So, assume that A; 1 contains all feasible pairs (w, v) for all possible sets
of items in {1,...,i — 1}, and we’ll prove the same for A;. Let S C {1,...,i} be some set with
w(S) < W.Ifi ¢ S, then (w(S),v(S)) € Aj—1 by assumption. If j € S, then where T = S \ {j},
(w(T),v(T)) € Aj_1 by assumption. Then in the algorithm we will see the pair (w(T),v(T)) and
will add (w(TU{j}),o(TU{j})) = (w(S),v(S)) since w(S) < W. O

Now, here’s the big question: what’s the running time of this algorithm? To compute A;, we
scan through A;_;. We said the size of A;_; is at most WV. So the running time is certainly at
most nWV.

Homework Preview: On your homework you’ll prove the running time can be improved to
O(n - min(W,V)). You'll also show that a small modification of this algorithm can recover the
solution itself, not just its value.

So why isn’t P=NP? Well, it’s because the running time of this algorithm is actually exponential
in the input size, as the running time is linear in the value of the number W. But you can input a
number of value n with log n bits.

Definition 1.3 (Pseudopolynomial Time). An algorithm runs in pseudopolynomial time if it runs in
polynomial time when the numbers in the input are encoded in unary.

And it turns out knapsack is only NP-hard when the numbers are exponentially large in the
input size n.

1.3 Memoization

Remember memoization? Another way to do this using dynamic programming is to notice that to
compute OPT on the first k elements, you only need to check two subproblems: either you took
the kth element or you didn’t. In other words, if OPT (i, w) is OPT on the first i elements with
bound w, then:

OPT(i,w) = max(OPT(i — 1,w), OPT (i — w,w — w;) + v;)

You can recursively compute the solution to OPT = OPT(n, W) by memoizing: keeping a table of
which subproblems have been computed so far, and only doing the computation if the subproblem
hasn’t been solved yet. It’s worth noting that this algorithm has running time upper bounded by
O(n - W), so already better than the above.

1.4 An FPTAS for Knapsack

Here we will show that you can get a FPTAS for knapsack, so a 1 — € approximation for any € > 0
running in time polynomial in n and % This algorithm is due to Ibarra and Kim from the 70s.
The intuition is that if we're OK with an approximate solution, the sizes of the input numbers
don’t have to be represented exactly. And from what you'll do on the homework, to get a
polynomial time algorithm it’s enough for the value of the optimal solution to be at most
polynomial in n.
So, here’s the algorithm. Create a new instance with weights w; and values

n 0;
vl = |- ——
€ maxX; 0;

for all items i. Then, run the dynamic programming algorithm above with running time # -
min(W, V) which also returns a solution. We will need to argue that the value of this solution
(with respect to the original values) is at least (1 —¢€) - OPT.

First let’s see the running time. We need to upper bound V in this instance. It’s at most the
value of the sum of all the items, which is at most

2

n

E — Si
1€ max,vl €

So, the algorithm is now truly polynomial time, not pseudo-polynomial time: it runs in O(”;)
steps.

Lemma 1.4. Let S be the optimal solution returned on the set of values v'. Then v(S) > (1 —€) -v(OPT).

Proof. Leta = be the scaling factor we apply before the floor. Then:

m
v(S) > i -v'(S) We rounded v’ down
> % '(OPT) S is optimal for v/
> v(OPT) — &

The last inequality is because for each of the at most n elements in OPT, we lose at most 1 unit in
v’ by rounding down, and the term is multiplied by «. But now

n
— = emaxv; > eOPT
o i

Since every element fits in the knapsack. But this implies v(OPT) — & > (1 — €)OPT, completing
the proof. O

	Knapsack
	A Greedy Algorithm for Knapsack
	A Dynamic Program for Knapsack
	Memoization
	An FPTAS for Knapsack

