Advanced Algorithms

Lecture 19: Spectral Graph Theory

Lecturer: Nathan Klein

1 Spectral Graph Theory

A beautiful and surprising area of computer science is studying the relationship between the eigenvalues of the adjacency matrix of a graph (or, more often, a very similar object called its *Laplacian*) and properties of the graph itself.

1.1 The Laplacian

The Laplacian of a graph G = (V, E) is a matrix L in $\mathbb{R}^{n \times n}$ (for |V| = n) so that L = D - A, where D is the diagonal matrix of degrees so that D_{ii} is the degree of the ith vertex and all off-diagonal entries are 0. For example:



$$L = D - A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Fact 1.1. For any graph G, its Laplacian L is positive semi-definite. Furthermore, we have

$$x^{T}Lx = \sum_{\{v_{i}, v_{i}\} \in E} (x_{i} - x_{j})^{2}$$

Proof. Let L_e be the Laplacian of the edge e between vertices v_i and v_j , i.e., the Laplacian of the graph $G' = (V, \{e\})$. This is going to be a matrix of the form $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (with some extra 0s at locations without an index i or j). But this matrix is equal to $b_e b_e^T$, where b_e is the vector with a 1 at position i and a -1 at position j. So, L_e is PSD. Now, notice that $L = \sum_{e \in E} L_e$. So,

$$x^T L x = x^T (\sum_{e \in E} L_e) x = \sum_{e \in E} x^T L_e x \ge 0$$

since each L_e is PSD, showing that L itself is PSD. Even better, for an edge $e = \{v_i, v_j\}$ we can compute

$$x^{T}L_{e}x = x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2} = (x_{i} - x_{j})^{2}$$

so that $x^T L x = \sum_{\{v_i, v_j\} \in E} (x_i - x_j)^2$ as desired.

From this we know that all the eigenvalues are non-negative. We also get the following corollary which frees us from this annoying $\mathbf{1}_S^T A \mathbf{1}_{V \setminus S}$ notation and is one of the reasons the Laplacian can be more natural to work with than the adjacency matrix.

Corollary 1.2. *Let* $S \subseteq V$. *Then,* $\mathbf{1}_{S}^{T}L\mathbf{1}_{S} = |\delta(S)|$.

Proof.

$$\mathbf{1}_{S}^{T}L\mathbf{1}_{S} = \sum_{\{v_{i},v_{j}\}\in E} (\mathbb{I}\left\{v_{i}\in S\right\} - \mathbb{I}\left\{v_{j}\in S\right\})^{2} = |\delta(S)|$$

since this quantity is 1 if and only if exactly one of v_i , v_i is in S.

For vectors $x \notin \{0,1\}^n$, this then gives us a kind of "fractional" cut.

Fact 1.3. $\lambda_1 = 0$ for any Laplacian matrix L.

Proof.
$$\mathbf{1}^T L \mathbf{1} = 0$$
 because the rows sum to 0, so $L \mathbf{1}$ is the 0 vector. So, $\lambda_1 = 0$.

So, the first eigenvalue is always 0. It turns out the second eigenvalue already tells us something interesting. Before we say this, let's prove a more general form of the Rayleigh quotient.

1.2 More on Eigenvalues

Theorem 1.4. Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ with orthonormal eigenvectors v_1, \ldots, v_n . Let O_k be the set of non-zero vectors that are orthogonal to the first k-1 eigenvectors v_1, \ldots, v_{k-1} (let O_1 be all non-zero vectors). Then for any $1 \leq k \leq n$:

$$\lambda_k = \min_{x \in O_k} \frac{x^T A x}{x^T x}$$

Proof. The proof of this is similar to the fact that $\lambda_1 = \min_{x \neq 0 \in \mathbb{R}^n} \frac{x^T A x}{x^T x}$, which you showed on your homework. In case you forget how that works, let's show that again. First we apply the spectral theorem so that $A = \sum_{i=1}^n \lambda_i v_i v_i^T$ where v_1, \ldots, v_n are an orthogonal basis of \mathbb{R}^n . So, $x = c_1 v_1 + \cdots + c_n v_n$ where $c_i = \langle x, v_i \rangle$. But now:

$$x^{T}Ax = (c_{1}v_{1} + \dots + c_{n}v_{n})^{T} \left(\sum_{i=1}^{n} \lambda_{i}v_{i}v_{i}^{T}\right) (c_{1}v_{1} + \dots + c_{n}v_{n})$$

$$= (c_{1}v_{1} + \dots + c_{n}v_{n})(\lambda_{1}c_{1}v_{1} + \dots + \lambda_{n}c_{n}v_{n})$$
Since v_{i} are orthonormal
$$= \sum_{i=1}^{n} \lambda_{i}c_{i}^{2}$$

Also, we have $x^Tx = (c_1v_1 + \cdots + c_nv_n)^T(c_1v_1 + \cdots + c_nv_n) = \sum_{i=1}^n c_i^2$. Therefore:

$$\frac{x^{T}Ax}{x^{T}x} = \frac{\sum_{i=1}^{n} \lambda_{i} c_{i}^{2}}{\sum_{i=1}^{n} c_{i}^{2}}$$

In other words, $\frac{x^TAx}{x^Tx}$ is a *convex combination* of the eigenvalues $\lambda_1, \ldots, \lambda_n$. So, it is certainly at least λ_1 , and we can pick the vector v_1 to achieve $c_1 = 1$, $c_i = 0$ for i > 1.

The more general proof is not very different. We know that the kth eigenvector is orthogonal to the others. So we have $x \in O_k$, and we must have $c_1, \ldots, c_{k-1} = 0$ since recall $c_i = \langle x, v_i \rangle$. So $x \in O_k$ is a convex combination of $\lambda_k, \ldots, \lambda_n$ so to minimize it we should choose $x = v_k$.

There is also a cleaner way to view things which is not tied to the eigenvectors.

Theorem 1.5 (Courant-Fischer). *Let A be a symmetric matrix. Then:*

$$\lambda_k = \min_{S \subseteq \mathbb{R}^n : \dim(S) = k} \max_{x \in S} \frac{x^T A x}{x^T x}$$

This is quite similar to what we have already done, so we will leave the proof as an exercise.

1.3 λ_2 and Connectivity

Now that we understand eigenvalues a bit better, we can prove the following:

Fact 1.6. *G* is connected if and only if $\lambda_2 > 0$.

Proof. First suppose G is disconnected. Then, there is a set of vertices $\emptyset \neq S \neq V$ so that $|\delta(S)| = 0$. So, by Corollary 1.2, $\mathbf{1}_S^T L \mathbf{1}_S = 0$, and $\mathbf{1}_S \neq \mathbf{0}$ which also implies $L \mathbf{1}_S = 0 \cdot \mathbf{1}_S$. But then we have two eigenvectors with eigenvalue 0, $\mathbf{1}$ and $\mathbf{1}_S$. Furthermore, they are not linearly dependent. So by Courant-Fischer, we can pick S as the 2-dimensional space spanned by $\mathbf{1}$ and $\mathbf{1}_S$ and λ_1, λ_2 are both 0, since $x^T L x$ will be 0 for any vector in the span of $\mathbf{1}$ and $\mathbf{1}_S$.

Second, suppose G is connected. Suppose that $\lambda_2 = 0$. Then there is a 2-dimensional space S with $x^T L x = 0$ for all $x \in S$. There is therefore some $x \in S$ which is not a multiple of the all 1s vector for which $x^T L x = 0$. Then,

$$\sum_{\{v_i, v_j\} \in E} (x_i - x_j)^2 = x^T L x = 0$$

That implies that $x_i = x_j$ for all i, j. But then x would be a multiple of v_1 , contradiction.

You might say now: who cares? We already know how to figure out if a graph is connected with much simpler methods. The reason we care is this: λ_2 of L is actually a measure of *how connected the graph is*. We'll talk more about this next time.