Advanced Algorithms

Lecture 19: Spectral Graph Theory

Lecturer: Nathan Klein

1 Spectral Graph Theory
A beautiful and surprising area of computer science is studying the relationship between the

eigenvalues of the adjacency matrix of a graph (or, more often, a very similar object called its
Laplacian) and properties of the graph itself.

1.1 The Laplacian

The Laplacian of a graph G = (V, E) is a matrix L in R"*" (for |V| = n) so that L = D — A, where
D is the diagonal matrix of degrees so that D;; is the degree of the ith vertex and all off-diagonal

entries are 0. For example:

2000 0110 2 -1 -1 0
0100 100 0 -1 1 0 0
L_D_A_0010_1000_—1010
0000 0000 0 0 0 0

Fact 1.1. For any graph G, its Laplacian L is positive semi-definite. Furthermore, we have
xTLx = Yo (xi— x]-)z
{ZJI‘,U]'}EE

Proof. Let L, be the Laplacian of the edge ¢ between vertices v; and v, i.e., the Laplacian of the

1 1
locations without an index i or j). But this matrix is equal to b.b!, where b, is the vector with a 1
at position i and a —1 at position j. So, L, is PSD. Now, notice that L =) ,.¢ L.. So,

xTLx = xT(Z Lx=)_ xTLex >0

ecE ecE

graph G’ = (V, {e}). This is going to be a matrix of the form [_1 } (with some extra Os at

since each L, is PSD, showing that L itself is PSD. Even better, for an edge ¢ = {v;, U]'} we can
compute

xTLex = x7 — 2x;x; + x]2 = (x; — x]-)2

so that x"Lx = (o0, eE (Xi — xj)? as desired. O



From this we know that all the eigenvalues are non-negative. We also get the following
corollary which frees us from this annoying 1L A1y s notation and is one of the reasons the
Laplacian can be more natural to work with than the adjacency matrix.

Corollary 1.2. Let S C V. Then, 11L15 = |5(S)|.

Proof.
1iL1s= Y (I{v;€ S} —1{v; € S})*=1[6(5)]
{U,‘,Uj}EE
since this quantity is 1 if and only if exactly one of v;, v; is in S. O

For vectors x ¢ {0,1}", this then gives us a kind of "fractional” cut.
Fact 1.3. Ay = 0 for any Laplacian matrix L.
Proof. 17L1 = 0 because the rows sum to 0, so L1 is the 0 vector. So, A1 = 0. O

So, the first eigenvalue is always 0. It turns out the second eigenvalue already tells us
something interesting. Before we say this, let’s prove a more general form of the Rayleigh quotient.
1.2 More on Eigenvalues

Theorem 1.4. Given a symmetric matrix A € R"™" with eigenvalues Ay < Ay < --- < A, with
orthonormal eigenvectors vy, ..., v,. Let Ok be the set of non-zero vectors that are orthogonal to the first
k — 1 eigenvectors vy, . .., vk (let Oy be all non-zero vectors). Then for any 1 < k < n:

. xTAx
Ay = min —
x€Or X° X

Proof. The proof of this is similar to the fact that A; = min,ocr» J‘;T—A;‘, which you showed on
your homework. In case you forget how that works, let’'s show that again. First we apply the
spectral theorem so that A = Y !, AiviviT where vy, ...,v, are an orthogonal basis of R". So,
X =101 + - - - + ¢yu, where ¢; = (x,v;). But now:

n
xTAx = (o1 4 -+ cavn) T (Y Awio] ) (c101 + - - - + cuvn)
i=1

= (c1o1 4+ -+ cpon) (Arc1o1 + - - - + Aycyoy) Since v; are orthonormal
n
~ 30
i=1
Also, we have xTx = (c;01 + -+ - + ¢,00) T (101 + - - + chvp) = Yty ¢2. Therefore:
xTAx Y0l Aic?
xTx 16
In other words, xx{;" is a convex combination of the eigenvalues Ay, ..., A,. So, it is certainly at least

A1, and we can pick the vector v; to achieve c; =1, c; =0 fori > 1.

The more general proof is not very different. We know that the kth eigenvector is orthogonal
to the others. So we have x € Oy, and we must have cy,...,c,_1 = 0 since recall ¢; = (x,v;). So
x € Oy is a convex combination of Ay, ..., A, so to minimize it we should choose x = vy. O



There is also a cleaner way to view things which is not tied to the eigenvectors.

Theorem 1.5 (Courant-Fischer). Let A be a symmetric matrix. Then:

. xT Ax
A = min max —x
SCR:dim(S)=k xS xTx

This is quite similar to what we have already done, so we will leave the proof as an exercise.

1.3 A and Connectivity

Now that we understand eigenvalues a bit better, we can prove the following:
Fact 1.6. G is connected if and only if Ay > 0.

Proof. First suppose G is disconnected. Then, there is a set of vertices @ # S # V so that |6(S)| = 0.
So, by Corollary 1.2, 1£L15 = 0, and 15 # 0 which also implies L1s = 0 - 15. But then we have two
eigenvectors with eigenvalue 0, 1 and 15. Furthermore, they are not linearly dependent. So by
Courant-Fischer, we can pick S as the 2-dimensional space spanned by 1 and 15 and A4, A; are
both 0, since xT Lx will be 0 for any vector in the span of 1 and 1s.

Second, suppose G is connected. Suppose that A, = 0. Then there is a 2-dimensional space S
with xTLx = 0 for all x € S. There is therefore some x € S which is not a multiple of the all 1s
vector for which xTLx = 0. Then,

(xi —xj)> =x"Lx =0
{"U,',Uj}EE

That implies that x; = x; for all 7, j. But then x would be a multiple of v;, contradiction. O

You might say now: who cares? We already know how to figure out if a graph is connected
with much simpler methods. The reason we care is this: A, of L is actually a measure of how
connected the graph is. We’ll talk more about this next time.
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