
Advanced Algorithms

Lecture 19: Spectral Graph Theory
Lecturer: Nathan Klein

1 Spectral Graph Theory

A beautiful and surprising area of computer science is studying the relationship between the
eigenvalues of the adjacency matrix of a graph (or, more often, a very similar object called its
Laplacian) and properties of the graph itself.

1.1 The Laplacian

The Laplacian of a graph G = (V, E) is a matrix L in Rn×n (for |V| = n) so that L = D − A, where
D is the diagonal matrix of degrees so that Dii is the degree of the ith vertex and all off-diagonal
entries are 0. For example:

v1

v2

v3

v4

L = D − A =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

−


0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

 =


2 −1 −1 0
−1 1 0 0
−1 0 1 0
0 0 0 0


Fact 1.1. For any graph G, its Laplacian L is positive semi-definite. Furthermore, we have

xT Lx = ∑
{vi ,vj}∈E

(xi − xj)
2

Proof. Let Le be the Laplacian of the edge e between vertices vi and vj, i.e., the Laplacian of the

graph G′ = (V, {e}). This is going to be a matrix of the form
[

1 −1
−1 1

]
(with some extra 0s at

locations without an index i or j). But this matrix is equal to bebT
e , where be is the vector with a 1

at position i and a −1 at position j. So, Le is PSD. Now, notice that L = ∑e∈E Le. So,

xT Lx = xT(∑
e∈E

Le)x = ∑
e∈E

xT Lex ≥ 0

since each Le is PSD, showing that L itself is PSD. Even better, for an edge e = {vi, vj} we can
compute

xT Lex = x2
i − 2xixj + x2

j = (xi − xj)
2

so that xT Lx = ∑{vi ,vj}∈E(xi − xj)
2 as desired.

1



From this we know that all the eigenvalues are non-negative. We also get the following
corollary which frees us from this annoying 1T

S A1V∖S notation and is one of the reasons the
Laplacian can be more natural to work with than the adjacency matrix.

Corollary 1.2. Let S ⊆ V. Then, 1T
S L1S = |δ(S)|.

Proof.
1T

S L1S = ∑
{vi ,vj}∈E

(I {vi ∈ S} − I
{

vj ∈ S
}
)2 = |δ(S)|

since this quantity is 1 if and only if exactly one of vi, vj is in S.

For vectors x ̸∈ {0, 1}n, this then gives us a kind of "fractional" cut.

Fact 1.3. λ1 = 0 for any Laplacian matrix L.

Proof. 1T L1 = 0 because the rows sum to 0, so L1 is the 0 vector. So, λ1 = 0.

So, the first eigenvalue is always 0. It turns out the second eigenvalue already tells us
something interesting. Before we say this, let’s prove a more general form of the Rayleigh quotient.

1.2 More on Eigenvalues

Theorem 1.4. Given a symmetric matrix A ∈ Rn×n with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with
orthonormal eigenvectors v1, . . . , vn. Let Ok be the set of non-zero vectors that are orthogonal to the first
k − 1 eigenvectors v1, . . . , vk−1 (let O1 be all non-zero vectors). Then for any 1 ≤ k ≤ n:

λk = min
x∈Ok

xT Ax
xTx

Proof. The proof of this is similar to the fact that λ1 = minx ̸=0∈Rn
xT Ax
xT x , which you showed on

your homework. In case you forget how that works, let’s show that again. First we apply the
spectral theorem so that A = ∑n

i=1 λivivT
i where v1, . . . , vn are an orthogonal basis of Rn. So,

x = c1v1 + · · ·+ cnvn where ci = ⟨x, vi⟩. But now:

xT Ax = (c1v1 + · · ·+ cnvn)
T(

n

∑
i=1

λivivT
i )(c1v1 + · · ·+ cnvn)

= (c1v1 + · · ·+ cnvn)(λ1c1v1 + · · ·+ λncnvn) Since vi are orthonormal

=
n

∑
i=1

λic2
i

Also, we have xTx = (c1v1 + · · ·+ cnvn)T(c1v1 + · · ·+ cnvn) = ∑n
i=1 c2

i . Therefore:

xT Ax
xTx

=
∑n

i=1 λic2
i

∑n
i=1 c2

i

In other words, xT Ax
xT x is a convex combination of the eigenvalues λ1, . . . , λn. So, it is certainly at least

λ1, and we can pick the vector v1 to achieve c1 = 1, ci = 0 for i > 1.
The more general proof is not very different. We know that the kth eigenvector is orthogonal

to the others. So we have x ∈ Ok, and we must have c1, . . . , ck−1 = 0 since recall ci = ⟨x, vi⟩. So
x ∈ Ok is a convex combination of λk, . . . , λn so to minimize it we should choose x = vk.
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There is also a cleaner way to view things which is not tied to the eigenvectors.

Theorem 1.5 (Courant-Fischer). Let A be a symmetric matrix. Then:

λk = min
S⊆Rn :dim(S)=k

max
x∈S

xT Ax
xTx

This is quite similar to what we have already done, so we will leave the proof as an exercise.

1.3 λ2 and Connectivity

Now that we understand eigenvalues a bit better, we can prove the following:

Fact 1.6. G is connected if and only if λ2 > 0.

Proof. First suppose G is disconnected. Then, there is a set of vertices ∅ ̸= S ̸= V so that |δ(S)| = 0.
So, by Corollary 1.2, 1T

S L1S = 0, and 1S ̸= 0 which also implies L1S = 0 · 1S. But then we have two
eigenvectors with eigenvalue 0, 1 and 1S. Furthermore, they are not linearly dependent. So by
Courant-Fischer, we can pick S as the 2-dimensional space spanned by 1 and 1S and λ1, λ2 are
both 0, since xT Lx will be 0 for any vector in the span of 1 and 1S.

Second, suppose G is connected. Suppose that λ2 = 0. Then there is a 2-dimensional space S
with xT Lx = 0 for all x ∈ S. There is therefore some x ∈ S which is not a multiple of the all 1s
vector for which xT Lx = 0. Then,

∑
{vi ,vj}∈E

(xi − xj)
2 = xT Lx = 0

That implies that xi = xj for all i, j. But then x would be a multiple of v1, contradiction.

You might say now: who cares? We already know how to figure out if a graph is connected
with much simpler methods. The reason we care is this: λ2 of L is actually a measure of how
connected the graph is. We’ll talk more about this next time.
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