
Advanced Algorithms

Lecture 17: The Johnson-Lindenstrauss Transform
Lecturer: Nathan Klein

1 Volume of the Ball and the Cube

Before talking about dimension reduction, we’ll discuss one more fact about high dimensional
geometry: that the volume of the ball and the cube diverge as d→ ∞. In particular remember the
d-dimensional ball Bd (setting r = 1) is the set of points x with ‖x‖2 ≤ 1. The d-dimensional cube
Cd is the set of points x with ‖x‖∞ = maxi{xi} ≤ 1.

In particular, we will show that the ball becomes tiny compared to the cube as d→ ∞.

Lemma 1.1. Vol(Bd)
Vol(Cd)

= e−Ω(d).

Proof. We will compute the probability a randomly chosen point in Cd lies in Bd. To choose a
point x in the cube at random, it suffices to pick x1, . . . , xd ∈ [−1, 1] uniformly at random. It will
lie in the ball exactly when ‖x‖2 ≤ 1. So, let’s apply Hoeffding to the independently sampled
random variables x2

i ∈ [0, 1] and let X = ∑d
i=1 x2

i , we have

P [|X−E [X] | ≥ t] ≤ 2e−
2t2
d

Now, E [X] = d ·E
[
x2

i
]
= d ·

∫ 1
−1

x2

2 dx = d · x3

6

∣∣1
−1 = d

3 . So,

P [X ≤ 1] ≤ P [|X−E [X] | ≥ d/3− 1] ≤ 2e−
2(d/3−1)2

d = e−Ω(d)

This adds some nice intuition to our thoughts about the curse of dimensionality with the
following corollary: fix any point x in the cube [−1, 1]d. Then, the probability another randomly
sampled point in the cube lies within distance 1 of x is vanishingly small: e−Ω(d).

2 Dimension Reduction

In this class, we will show the following, often called the "Johnson-Lindenstrauss Lemma."

Theorem 2.1 (JL Lemma). Given n points x1, . . . , xn ∈ Rd and an approximation factor ε > 0, we
can choose k ∈ O( log n

ε2 ) and a matrix P ∈ Rk×d so that if yi = Pxi for all 1 ≤ i ≤ n, the points
y1, . . . , yn ∈ Rk approximately preserve the `2 distances of x1, . . . , xn. In other words, it’s the case that for
all i, j we have:

(1− ε)‖xi − xj‖2 ≤ ‖yi − yj‖2 ≤ (1 + ε)‖xi − xj‖2

This is a very useful theorem. Suppose you have a collection of n vectors S ⊆ Rd for some very
large d, and given any x, y ∈ S you want to be able to compute their `2 distance d(x, y) = ‖x− y‖2.
This result says that you can reduce the storage from nd to O(n log(n)) as long as you are OK
with a small loss in precision. Furthermore, we can compute the `2 distance between any pair in
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only O(k) ≈ O(log n) time instead of O(d) time. This has applications in, for example, speeding
up nearest neighbor search over `2.

A first attempt might be to subsample the dimensions, taking each one with probability k
d .

However this clearly fails when comparing two vectors (1, 0, . . . , 0) and (0, 1, 0, . . . , 0), as you will
almost always map them to the same points. So what does work?

2.1 Proof of JL

We will let P be a matrix in Rk×d where each entry Pi,j is an independent standard Gaussian,
N (0, 1), multiplied by 1√

k
. We will prove the following:

Lemma 2.2. For any ε > 0, δ > 0, if we pick k = O(log(1/δ)/ε2), for any vector x with ‖x‖2
2 = 1 we

have:
1− ε ≤ ‖Px‖2

2 ≤ 1 + ε

with probability 1− δ.

At first glance, this lemma does not look so interesting. For example, to achieve this, couldn’t
we just map every vector to its length? However, using the fact that this mapping is linear (setting
yi = Pxi for some matrix P), it becomes enough to prove the whole theorem. Before proving it,
let’s show that it implies the JL lemma.

Proof of JL. For a pair xi, xj, apply Lemma 2.2 to the vector xi−xj
‖xi−xj‖2

. This implies that with
probability 1− δ, we have:

1− ε ≤ ‖P
xi − xj

‖xi − xj‖2
‖2

2 ≤ 1 + ε

Pulling out the constant term 1
‖xi−xj‖2

, it gets squared, and we can multiply by it on both sides,
yielding:

(1− ε)‖xi − xj‖2
2 ≤ ‖P(xi − xj)‖2

2 = ‖Pxi − Pxj‖2
2 ≤ (1 + ε)‖xi − xj‖2
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but after taking square roots this is exactly what we want for two points xi, xj, noting that
|
√

1− ε| < 1− ε.
(1− ε)‖xi − xj‖2 ≤ ‖Pxi − Pxj‖2 ≤ (1 + ε)‖xi − xj‖2

since ‖yi − yj‖2 = ‖Pxi − Pxj‖2. So we know that for any particular pair xi, xj, the probability the
distance is not distorted by more than 1± ε is at least 1− δ.

Therefore, we need to choose δ small enough so that we can union bound over all pairs. It’s
enough to choose δ = 1

n2 to prove the theorem since then after union bounding our probability of
success is at least 1− (n

2) ·
1
n2 ≥ 1

2 , guaranteeing existence of a good matrix (one can be found with
high probability by running the same procedure many times). But by Lemma 2.2, to achieve these
it suffices to pick k = O(log(n2)/ε2) = O(log(n)/ε2), as desired.

So, let’s prove Lemma 2.2.

Proof. For our input x, let’s compute the expected `2 norm of y = Px.

E
[
‖Px‖2

2
]
=

k

∑
i=1

E
[
y2

i
]
=

1
k

k

∑
i=1

E

( d

∑
j=1

xjgij

)2

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where the gij are independent standard Gaussians. But recall that any scaling of a Gaussian
with mean µ and variance σ2 by α is also Gaussian with mean αµ and variance α2σ2. So, we
are summing Gaussians 1, . . . , d with mean 0 and variance x2

j . And now, recall our second fact
about Gaussians: that the sum of two independent ones with mean µ1, µ2 and variance σ2

1 , σ2
2 is

Gaussian with mean µ1 + µ2 and variance σ2
1 + σ2

2 . Therefore this whole inner term ∑d
j=1 xjgj is

just a Gaussian with mean 0 and variance ‖x‖2
2 = 1. So, the expected value of its square is its

variance, 1, and we have:

E
[
‖Px‖2

2
]
=

1
k

k

∑
i=1

E

( d

∑
j=1

xjgj

)2
 =

1
k

k

∑
i=1

1 = 1

Therefore, the expected value is 1. So now we just need to prove that we don’t deviate from this
expected value too much, which is something we already have experience with using Hoeffding’s
inequality. In this case, we have something very specific: the sum of the squares of k standard
normals is called a chi-squared (χ2) random variable with k degrees of freedom. We won’t dive
into this in this class, but it’s good to at least know what a chi-squared distribution is because it is
one of the most widely used distributions in statistics and, more specifically, hypothesis testing.

So, this distribution is quite well understood. A standard tail bound for the chi-squared
distribution with k degrees of freedom is this:

P [|X−E [X] | ≥ εE [X]] ≤ 2e−kε2/8

This is exactly the probability we do not have ‖Px‖2
2 ∈ [1− ε, 1 + ε]. Setting this to δ = 2e−kε2/8

and taking logs gives us k = O(ln(1/δ)/ε2) as desired.

It turns out this is optimal, and the dependence on ε and n cannot be improved.
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