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1 Recap of Online Bipartite Matching

Remember we are studying the question: how do we maintain a good solution to a problem when
the input is not given to us ahead of time? And in particular, we’re studying the problem of online
bipartite matching.

Definition 1.1 (Online Bipartite Matching). An instance I of online bipartite matching consists of
a bipartite graph G = (Off ⊎ On, E) and an ordering v1, . . . , v|On| of the online nodes so that node vi
arrives at timestep i. At each timestep i, the algorithm must decide what node in Off to match vi ∈ On to,
if any, using only the knowledge of the set of nodes Off and the edges

⋃i
j=1 δ(vi).

And we want to find an algorithm A with a competitive ratio α at close to 1 as possible.
Remember that if A(I) is the set of edges in the matching returned by A on instance I and M(I)
is the edges in the maximum matching in I , then the competitive ratio of A is:

α = inf
I

E [|A(I)|]
|M(I)|

where the expectation is over the randomness in the algorithm A. We showed that the greedy
algorithm is 1

2 competitive. A natural question is whether this is optimal.

2 The Red-Blue Algorithm

In this lecture, we will show that if we color every offline node red or blue independently and
run the greedy algorithm in which online nodes prefer to match to red nodes, then the competitive
ratio improves to 5

9 . This algorithm is a simplification of the so-called ranking algorithm by Karp,
Vazirani, and Vazirani [KVV90] and was analyzed by Dürr, Konrad, and Renault [DKR16]. We
thank Zhuan Khye Koh for helping with the style of proof presented here.

As in the primal-dual analysis of greedy, if we get a match, we will set the dual values yu and
yv using a potential function g : {red, blue} → [0, 1] so that we increase the dual by 1 whenever
we add an edge to the matching. We will decide the function later, but it will simply indicate how
we decide to "split" the match value of 1 on the dual variables.

Theorem 2.1. The Red-Blue Algorithm achieves an expected competitive ratio of at least 5
9 .

Proof. First, we establish how we prove an α-competitive ratio using the dual LP formulation.

Lemma 2.2. For some α ∈ [0, 1], if E [yu + yv] ≥ α, then E [|M|] ≥ α · OPT.

Proof. Consider any matching |M|. We have

|M| = ∑
e∈M

1 = ∑
{u,v}∈M

yu + yv (since yu + yv = (1 − g(·)) + g(·) = 1)

= ∑
u∈On

yu + ∑
v∈Off

yv. (since yu, yv = 0 if not matched)
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Algorithm 1 The Red-Blue Algorithm

1: Input: G = (Off ⊎ On, E).
2: for each v ∈ Off do
3: Color v red with probability 1

2 and blue otherwise. Let Cv ∈ {red, blue} be the color of v.
4: end for
5: Initialize all dual variables to 0.
6: for each arrival u ∈ On do
7: Let UN(u) be the set of unmatched neighbors of u. If UN(u) = ∅, skip to the next vertex.
8: Match u to any red node if available. If not, match to any blue node. Let v be the node

matched to u.
9: Set yu = 1 − g(Cv) and yv = g(Cv).

10: end for
11: return the matching M

Which means, if we take the expectation of |M|, we have

E[|M|] = E

[
∑

u∈On

yu + ∑
v∈Off

yv

]
= ∑

u∈On

E [yu] + ∑
v∈Off

E [yv] (by linearity of expectation)

From the lemma statement, we assumed

E [yu + yv] ≥ α ⇐⇒ 1
α

E [yu + yv] ≥ 1

for every edge. This implies the vector 1
α E [⃗y] satisfies all the dual LP constraints and forms a

feasible dual solution, and we have

1
α

(
∑

u∈On

E [yu] + ∑
v∈Off

E [yv]

)
≥ OPTD ≥ OPTP = OPT,

since a feasible dual solution is at least as large as the optimal dual solution OPTD, and the
optimal dual value gives an upper bound on the primal solution OPTP, which is then equal to
OPT as we proved in homework 2. Then by rearranging the inequality, we prove the lemma.

So now, we just have to prove that for all edges {u, v} ∈ E, the expected value of the dual
values yu + yv is at least 5

9 .
Consider an edge {u, v} ∈ E. The idea of the proof is to construct an alternate scenario, where

node v is excluded, then add back v and randomize over Cv. Before we jump into the lemma and
the proof, we will fix some notation as follows:

• C−v: the set of colors of the nodes in Off − {v}.

• G−v: the graph G without node v.

• RB(G−v, C−v): the alternate setting where v is excluded and C−v is fixed.
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Lemma 2.3. For any v ∈ Off, we have

E
Cv∼{red,blue}

[yu + yv | C−v] =
5
9

Proof. Consider fixing some realization of the colors in C−v. Then, one of the three cases are
possible:

1. u is not matched.

2. u is matched to a red node.

3. u is matched to a blue node.

We will analyze the dual values of each case separately, then find a global minimum.
Case 1: u is not matched.
If u is not matched in RB(G−v, C−v), then adding v back to G−v will always cause v to be

matched in the original setting. This could be with u, or a neighbor of v that arrives before. Thus,
we have

E
Cv∼{red,blue}

[yv | C−v] =
1
2

g(red) +
1
2

g(blue). (1)

Note that in this case, we can only give a trivial lower bound of 0 for yu, since we cannot
guarantee that u will be matched.

Case 2: u is matched to a red node.
If u is matched to a red node in RB(G−v, C−v), then adding v back to G−v will not change the

color match of u in the original setting. In other words, u will still always be matched to a red
node in the original setting. Thus, we have

E
Cv∼{red,blue}

[yu | C−v] ≥ 1 − g(red). (2)

Again, in this case, we cannot guarantee that v will be matched, so we can only apply a trivial
lower bound of 0 for yv.

Case 3: u is matched to a blue node.
If u is matched to a blue node in RB(G−v, C−v), adding v back may have different outcomes.

If we add v back and Cv is red, we can guarantee that v will be matched. Since we also have that
u was originally matched to a blue, we can also guarantee that u will be matched. However, if v
is blue, we cannot guarantee that v will be matched. Before we give the actual lower bound, we
must first make the following claim:

Claim 2.4. For the potential function g, we must have

g(red) < g(blue).

We will later prove the claim, as if this condition is false, we cannot achieve a competitive ratio
better than 1

2 .
Using the claim, we have

E
Cv∼{red,blue}

[yu + yv | C−v] ≥ 1
2
(1 − g(blue)) +

1
2
(g(red) + 1 − g(blue)), (3)
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where we used the fact that g(red) ≤ g(blue) to get the lower bounds.
We can now set the three expressions equal to each other to solve for a global lower bound.
By (1) and (3), we have

1
2

g(blue) +
1
2

g(red) = 1 − g(blue) +
1
2

g(red) ⇐⇒ 3
2

g(blue) = 1 ⇐⇒ g(blue) =
2
3

.

Next, using (2), (3), and g(blue) = 2
3 , we have

1 − g(red) = 1 − g(blue) +
1
2

g(red) ⇐⇒ g(blue) =
3
2

g(red) =
2
3

,

which gives g(red) = 4
9 .

This means that we have a global lower bound of

E
Cv∼{red,blue}

[yu + yv | C−v] ≥ 1 − g(red) =
5
9

.

Now, we can finalize the proof. We know that given any choice of C−v, we have ECv [yu + yv |
C−v] ≥ 5

9 . This means that, by law of total expectation, we have

E [yu + yv] = E
C−v

[
E

Cv∼{red,blue}
[yu + yv | C−v]

]
= E

C−v

[
5
9

]
=

5
9

.

Thus, the Red-Blue Algorithm has a competitive ratio of 5
9 .

So why can we not have g(red) ≥ g(blue)? It turns out, if we assume this, we cannot hope to
achieve a competitive ratio better than 1

2 .

Proof of Claim 2.4. Suppose g(red) ≥ g(blue). Then, we will establish a global lower bound by
setting (3) equal to (4). Setting the two expressions equal, we have

1
2

g(red) +
1
2

g(blue) = 1 − g(red)

⇐⇒ 3
2

g(red) +
1
2

g(blue) = 1

⇐⇒ g(red) ≥ g(blue) = 2 − 3g(red) (by assumption)

⇐⇒ g(red) ≥ 1
2

.

Plugging this value of g(red) to (4), we get

1 − g(red) ≤ 1
2

.

Thus, if g(red) ≥ g(blue), we cannot prove a competitive ratio better than 1
2 .
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2.1 Ranking and Upper Bound

We have shown an algorithm with competitive ratio 5
9 . It turns out that by letting the number of

colors go to infinity, the ratio tends to 1 − 1
e and corresponds to the so-called ranking algorithm

of Karp, Vazirani, and Vazirani [KVV90]. In Appendix A, we show why the ranking algorithm
achieves a ratio of 1 − 1

e . The proof is quite similar in spirit to what we just did. You do not need
to know this proof, but it’s there in case you want to see the analysis.

It turns out 1 − 1
e is the best possible competitive ratio. [KVV90] presented the following input

instance and proved that no randomized algorithm can do better than (1 − 1
e )-competitive ratio.

u1

u2

u3

...

un

v1

v2

v3

...

vn

Figure 1: Hard input example from [KVV90].
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A The Ranking Algorithm

Instead of the original proof by [KVV90], we will go over a much simpler analysis, due to Devanur,
Jain, and Kleinberg [DJK13].

A.1 Competitive Ratio of Ranking

As mentioned earlier, for every offline node, we will sample Yv ∼ Unif(0, 1), then on the arrival
of an online node, we will match to the smallest label possible. But, we will add an extra step
in the algorithm; if we get a match, we will set the dual values yu and yv to 1 − g(Yv) and g(Yv),
respectively, where g : [0, 1] → [0, 1] is some potential function. This will help us later when we
analyze the competitive ratio of the algorithm. You can think of g as how we decide to “split”
the match value of 1 on the dual values. Throughout the proof, we will list the properties that g
needs to satisfy to make the proof work, and towards the end, we will show how we choose this
function g.

Algorithm 2 The Ranking Algorithm [KVV90; DJK13]

1: Input: Graph G = (Off ⊎ On, E).
2: for each v ∈ Off do
3: Sample Yv ∼ Unif(0, 1).
4: end for
5: Initialize all dual variables to 0.
6: for each arrival u ∈ On do
7: Let UN(u) be the set of unmatched neighbors of u. If UN(u) = ∅, skip to the next vertex.
8: Match u to v := arg minw∈UN(u) Yw.
9: Set yu = 1 − g(Yv) and yv = g(Yv).

10: end for
11: return the match set M

We can see that this algorithm is called “Ranking”, since sampling Yv ∼ Unif(0, 1) imposes a
ranking on the offline vertices.

Theorem A.1 ([KVV90]). The Ranking Algorithm achieves an expected competitive ratio of 1 − 1
e .

Proof. First, we establish how we prove an α-competitive ratio using the dual LP formulation.

Lemma A.2. For some α ∈ (0, 1), if E [yu + yv] ≥ α, then E [|M|] ≥ α · OPT.

Proof. Consider any matching |M|. We have

|M| = ∑
e∈M

1 = ∑
{u,v}∈M

yu + yv (since yu + yv = (1 − g(Yv)) + g(Yv) = 1)

= ∑
u∈On

yu + ∑
v∈Off

yv. (since yu, yv = 0 if not matched)
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Which means, if we take the expectation of |M|, we have

E
Y∼[0,1]|Off|

[|M|] = E

[
∑

u∈On

yu + ∑
v∈Off

yv

]
= ∑

u∈On

E [yu] + ∑
v∈Off

E [yv] (by linearity of expectation)

From the lemma statement, we assumed

E [yu + yv] ≥ α ⇐⇒ 1
α

E [yu + yv] ≥ 1

for every edge. This implies the vector 1
α E [⃗y] satisfies all the dual LP constraints and forms a

feasible dual solution, and we have

1
α

(
∑

u∈On

E [yu] + ∑
v∈Off

E [yv]

)
≥ OPTD ≥ OPTP = OPT,

since a feasible dual solution is at least as large as the optimal dual solution OPTD, and the
optimal dual value gives an upper bound on the primal solution OPTP, which is then equal to
OPT as we proved in homework 2. Then by rearranging the inequality, we prove the lemma.

So now, we just have to prove that for all edges {u, v} ∈ E, the expected value of the dual
values yu + yv is at least 1 − 1

e .
Consider an edge {u, v} ∈ E. The idea of the proof is to construct an alternate scenario, where

node v is excluded, then add back v and randomize over Yv.
Before we proceed with the detailed proof, we will define some notations below:

• Superscript −v: Variables with −v superscript means in the alternate scenario, where v is
excluded. For example, G−v is the graph without node v.

• Ranking(G−v): The alternate scenario where v is excluded.

• h(u): The hypothetical matching of u in Ranking(G−v), given that we fix an arbitrary Y−v.

Throughout the proof, I will place subscripts on E and P, since it is helpful to know what we
randomize over.

First, it is possible that h(u) = ∅. In this case, we can define Yh(u) = 1. Since we do not get
any match value if h(u) = 1, we want to set yu = 1 − g(Yh(u)) = 0. This means that we must have
the following property for g:

• g(1) = 1.

This will be more clear when we look at the following lemma.

Lemma A.3. For any v ∈ Off, we have

E
Yv∼[0,1]

[yv | Y−v] ≥
∫ Yh(u)

0
g(x)dx.
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Proof. The main idea of the proof is that, if Yv < Yh(u), vertex v will always be matched–either
by u or an earlier node. Since we cannot guarantee that v will be matched if Yv > Yh(u), we will
instead give a lower bound.

Let f (x) be the PDF of Yv ∼ Unif(0, 1). Then, the rest of the proof simply follows, since

E
Yv∼[0,1]

[yv | Y−v] =
∫ 1

0
g(x) · P

Yv∼[0,1]
[v ∈ M | Y−v ∩ Yv = x] · f (x|Y−v)dx (by LOTUS)

≥
∫ Yh(u)

0
g(x) · P

Yv∼[0,1]
[v ∈ M | Y−v ∩ Yv = x] · f (x|Y−v)dx

=
∫ Yh(u)

0
g(x) · f (x|Y−v)dx (Yv < Yh(u) implies v is matched)

=
∫ Yh(u)

0
g(x)dx. (since Yv ∼ Unif(0, 1))

This proves the lemma.

Lemma A.4. For any v ∈ Off, we have

E
Yv∼[0,1]

[yu | Y−v] ≥ 1 − g(Yh(u)).

Proof. Consider the alternate scenario where we exclude v. Intuitively, adding node v back does
not make the algorithm perform any worse, i.e. it only helps node u find an open neighbor.

Let’s formally prove this. Let UMt ⊆ Off and UM−v
t ⊆ Off − {v} be the set of unmatched

nodes prior to timestep t, for the original setting and the alternate setting, respectively. We claim
that up to the arrival of u, we have

UMt ⊇ UM−v
t .

We prove this inductively. Imagine we run the two algorithms in parallel. The base case is trivially
true, since before the arrival of any vertex, we have

Off = UMt ⊇ UM−v
t = Off − {v}.

Now, assume this is true for some timestep t. We split into two cases: For some v′ ∈ Off, both
scenarios simultaneously match v′, or v′ is matched in the original setting, but not in the alternate
setting.

The former case subtracts v′ from both UMt and UM−v
t , which still satisfies the claim. The

latter case can happen only if v′ was not in UM−v
t . By our inductive hypothesis UMt ⊇ UM−v

t ,
the claim is not violated by subtracting v′ from UMt. This proves the inductive step.

Let M(u) be the match we get for u. This allows us to conclude

YM(u) ≤ Yh(u),

since the label of the match we get for u in the original setting will be Yh(u) at worst.
Before we conclude the lemma, we must have the following property for g:

• Property 2: g is monotonically non-decreasing over [0, 1].
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Now, we can conclude the lemma, since

E
Yv∼[0,1]

[yu | Y−v] = E
Yv∼[0,1]

[1 − g(YM(u)) | Y−v] ≥ 1 − g(Yh(u)).

We are now ready to prove the main theorem. So far, we have proven

E
Yv∼[0,1]

[yu + yv | Y−v] ≥ 1 − g(Yh(u)) +
∫ Yh(u)

0
g(x)dx.

Which means that for every edge {u, v} ∈ E, we have

E [yu + yv] = E
Y−v

[
E

Yv∼[0,1]
[yu + yv | Y−v]

]

≥ E
Y−v

[
1 − g(Yh(u)) +

∫ Yh(u)

0
g(x)dx

]
≥ min

θ∈[0,1]

(
1 − g(θ) +

∫ θ

0
g(x)dx

)
.

To find the minimum, we can simply take the derivative and solve for 0. But before we take
the derivative, we must make sure we have the following property for g:

• Property 3: g is convex and differentiable over [0, 1].

∂

∂θ

(
1 − g(θ) +

∫ θ

0
g(x)dx

)
= −g′(θ) + g(θ) = 0.

Then, we have that 1 − g(θ) +
∫ θ

0 g(x)dx is minimized when g(θ) = g′(θ).
Before we finalize the proof, we now have everything we need to find what the exact potential

function g is. Since we have g(θ) = g′(θ), by combining Properties 2 and 3, we have g(x) in the
form of g(x) = ex+c. Setting c = −1 satisfies the first property, so we have

g(x) = ex−1.

Now, we are ready to conclude the proof. For every edge {u, v} ∈ E, we have

E [yu + yv] ≥ min
θ∈[0,1]

(
1 − g(θ) +

∫ θ

0
g(θ)dx

)
= min

θ∈[0,1]

(
1 − eθ−1 + eθ−1 − e−1

)
= 1 − 1

e
,

which, in combination with Lemma A.2, proves the main theorem.
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