
Advanced Algorithms

Lecture 11: Introduction to Online Algorithms
Lecturer: Nathan Klein

1 Introduction

The focus of this lecture is answering the question: how do we maintain a good solution to a
problem when the input is not given to us ahead of time?

1.1 The Secretary Problem

Suppose there are two players. One player puts n pieces of paper in a box with a different number
written on each piece. The second, only knowing n, randomly pulls out pieces of paper from the
box and looks at them. After seeing a number, the second player can either pick this number and
stop, or discard it permanently and keep trying to find a higher number. Now, the question is:

Question: can the second player always pick the largest number in the box with constant
probability? (Say at least 1%?)

While at first this may look impossible, it turns out the answer is yes!

Lemma 1.1. There is a strategy which picks the highest number with probability at least 1
4 .

Proof. The strategy is as follows. Take out n
2 pieces of paper at random (suppose n is even for

simplicity), and record the highest number v∗ seen in the first half. Then, pick the first number
you see with value greater than v∗.

This strategy will pick the highest number if the second higher number is in the first half
and the highest number is in the second half. The probability the second highest candidate is in
the first half, and the highest number is in the second half, is the probability that in a random
permutation of [n], 2 appears in the first half and 1 appears in the second half. This probability of
this is a little more than 1

4 (in particular, it’s 1
2 ·

n/2
n−1 > 1

4 ).

This is called the secretary problem, because usually in the problem setup you are hiring a
secretary, and you have n candidates you will interview in a random order. When you interview a
candidate, you see their score and have to hire them on the spot or reject them permanently. You
then want to hire the candidate with the highest score with some probability.1

It turns out you can do better than 1
4 : you can achieve a probability of 1

e ≈ 0.367.

Lemma 1.2. There is a strategy which picks the highest number with probability 1
e .

Proof. Same idea here, but let’s try to pick the best possible time to start looking for the highest
number. Knowing n, say you don’t allow yourself to pick anything earlier than the kth one you
see.

1I prefer the slips of paper setup. For some reason, it feels more surprising that there is a strategy that succeeds
with constant probability here, even though it’s exactly the same problem.

1



Then,

P [success] =
n

∑
i=k

P [i picked, i highest]

=
n

∑
i=k

P [i picked | i highest]P [i highest]

=
1
n

n

∑
i=k

P [highest of first i− 1 is in first k− 1 | i highest]

But this probability is just k−1
i−1 , so we get

1
n

n

∑
i=k

k− 1
i− 1

=
k− 1

n

n

∑
i=k

1
i− 1

We can choose k to maximize this. Let’s say k = δn for some δ ∈ [0, 1]. Then, this quantity is
essentially

δ
n

∑
i=δn

1
i
= δ(Hn − Hδn) ≈ δ(ln n− ln(δn)) = δ ln

1
δ
= −δ ln δ

To maximize this expression, take its derivative with respect to δ, which is − ln δ− 1. Setting this
to 0, we get δ = 1

e . This gives a success probability of 1
e ln(e) = 1

e .
So, our algorithm is: wait until you have seen n

e of the numbers (rounding up or down), and
then pick the first number that’s higher than the best you’ve seen so far. Some slightly more
careful calculations reveal that the success probability is always better than 1

e , but tends to 1
e as

n→ ∞.

It turns out that this is also the best you can do. You can formally show that really, the only
algorithm is: "if the kth number is the largest I have seen so so far, and I have seen sufficiently
many candidates, then I will select this number." But our analysis is exactly picking the best
stopping time, so 1

e is the best probability you can get.

1.2 Bipartite Matching

Let’s dive into a slightly more intricate real-world example of online algorithms: a ride-hailing
app. Here, suppose that the set of drivers is known to us and given a ride request, we need to
quickly decide with which driver to serve that request.

To formalize this model, suppose we have a bipartite graph consisting of drivers on one side
and clients on the other. Now, the clients will arrive one by one in some order. When a client
arrives, we see where they are located, and generate a list of drivers that are sufficiently close to
them. In other words, a node v on the client side of the graph is revealed together with the edges
in δ(v). We then need to irrevocably choose a driver to match them with.

Our goal will be to make sure that we serve as many clients as possible. To simplify the model,
we assume that the driver list is fixed and once a driver serves a client, they cannot serve another
client. (This is a reasonable model for finding a good assignment in a fixed length time window.)
We call the drivers the offline nodes and the clients the online nodes.

2



u1

u2

u3

u4

v1

v2

v3

v4

Figure 1: On the left are the offline nodes, and on the right the online nodes. At timestep 3, the
edges adjacent to v3 are revealed. We have already matched v1 and v2 (in solid red), and need to
decide whether to match v3 to u2 or u4 (we cannot match it to u3, as this has already been taken).
The edges adjacent to v4 are still unknown.

Definition 1.3 (Online Bipartite Matching). An instance I of online bipartite matching consists of
a bipartite graph G = (Off ]On, E) and an ordering v1, . . . , v|On| of the online nodes so that node vi
arrives at timestep i. At each timestep i, the algorithm must decide what node in Off to match vi ∈ On to,
if any, using only the knowledge of the set of nodes Off and the edges

⋃i
j=1 δ(vi).

To understand the performance of an algorithm for this problem (we call this the “competitive
ratio"), we will compare it to a powerful adversary: an algorithm that knows the entire sequence
of clients and their edges up front. In other words, we compare to the optimal solution given the
whole input.

Definition 1.4 (Competitive Ratio of an Online Algorithm). Given a (possibly randomized) algorithm
A for an online problem, the competitive ratio α ≤ 1 of A is defined as the worst-case ratio, over all
instances I , of the expected value of A(I) divided by the value of the optimum solution of the offline
problem.

So, if A(I) is the set of edges in the matching returned by A on instance I and M(I) is the
edges in the maximum matching in I , then the competitive ratio of A is:

α = inf
I

E [|A(I)|]
|M(I)|

where the expectation is over the randomness in the algorithm A.

2 The Greedy Algorithm

First, we will analyze the most natural algorithm for this problem. When an online node arrives,
select an arbitrary available offline node to match it to (if one exists).

The result is a maximal matching. A matching is maximal if no edge can be added to it. It is
well known that any maximal matching is always at least half the size of the maximum matching.

3



Lemma 2.1. Every maximal matching is at least half the size of a maximum matching.

Proof. Let M be the edges in a maximal matching and O the edges of a maximum matching. Since
M is maximal, no edge of O can be added to M so that M remains a matching. It follows that
every edge (u, v) ∈ O has the property that either u is matched in M or v is matched in M. Since
O is a matching, this implies that M has at least |O| matched vertices. The number of matched
vertices in M is exactly 2|M|. Therefore, 2|M| ≥ |O|, or |M| ≥ 1

2 |O|, as desired.

This is tight, as there are graphs where a maximal matching has size half that of a maximum
matching, e.g. in Fig. 2.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 2: In red is a maximum matching of size half that of the maximum matching (in black).

Homework Preview: A natural way to try to improve this algorithm is to choose a random
neighbor to match an incoming online vertex to. You will show in your homework that this does
not improve the performance to more than 1

2 + o(1).

3 Primal Dual Analysis

A popular framework for analyzing online algorithms is called primal dual. Here, we construct
a linear programming relaxation of the problem (the primal) and simultaneously construct a
feasible solution to its dual.

Our solution to the primal is going to be integral: we’ll just give an actual matching. The dual
solution will serve as a lower bound on the optimal solution.

3.1 Primal and Dual Formulations

We can write the following linear program for the maximum matching problem.

max ∑
e∈E

xe

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(1)

4



From the second homework, we know that when the underlying graph is bipartite, this has
an integrality gap of 1.2 Now, let’s write the dual formulation. In the dual, we want to find a
combination of the constraints, with the constraint for v ∈ V having multiplier yv, so that the LHS is
greater than the objective function ∑e∈E xe of the primal, and the RHS is as small as possible.

min ∑
v∈V

yv

yu + yv ≥ 1 ∀{u, v} ∈ E
yv ≥ 0 ∀v ∈ V

(2)

To gain some intuition about the dual, let’s construct one for the following graph. Since this is a

u1

u2

u3

v1

v2

v3

e

g

h

f

Figure 3: An example graph.

small example, it should be easy to see the maximum matching has size 2. But how would we
prove it using the dual?

We can set yu1 = 1, yv2 = 1. This is feasible for the dual since every edge is adjacent to either
u1 or v2, and it has objective value 2. So, this is a lower bound. But what are we really doing?
We’re just saying: take one copy of the constraint xe + x f ≤ 1, and one copy of the constraint
xg + xh ≤ 1. This reads:

xe + x f + xg + xh ≤ 2

But this is exactly the objective function, so it proves that the objective is at most 2. In general:

Fact 3.1. Let y be a feasible solution to (2). Then, the optimal matching has size at most ∑y∈V yv.

Proof. Let y ∈ RV be a feasible dual solution. Consider summing the constraints in the primal to
form an equation, where for each v we take yv of the constraint ∑e∈δ(v) xe ≤ 1. This equation will
read:

∑
e={u,v}∈E

(yu + yv)xe ≤ ∑
v∈V

yv

But since 0 ≤ yu + yv ≤ 1 for all {u, v} ∈ E and xe ≥ 0 for all e ∈ E, we have:

OPT ≤ ∑
e∈E

xe ≤ ∑
e={u,v}∈E

(yu + yv)xe ≤ ∑
v∈V

yv

where OPT is the size of the optimal matching, and we have used in the first inequality that (1) is
a relaxation of the problem.

2When the graph is not bipartite, it has an integrality gap of 3
2 .

5



3.2 Analyzing the Greedy Algorithm

Let’s prove again that the greedy algorithm is 1
2 -competitive using the primal-dual analysis

framework.
Whenever an online node v arrives, if it can be matched, pick an arbitrary edge {u, v}, add it

to the matching, and set yu = yv = 1
2 .

Let M be the matching produced by the greedy algorithm. Clearly, at the end of the algorithm
|M| = ∑v∈V yv. We will now show the following, which implies that greedy is a 1

2 -approximation.

Lemma 3.2. 2y is dual feasible.

Proof. Suppose by way of contradiction that 2yu + 2yv < 1 for some edge e = {u, v}, where v is
online and u is offline. It follows that yu = yv = 0, because yv ∈ {0, 1

2} by construction. But this
means that when v arrived, it was not matched. Contradiction, since it would have used edge e as
u was available.

Therefore, we have a competitive ratio of 1
2 , since our matching M obeys:

|M| = ∑
v∈V

yv ≥
1
2

OPT

where in the inequality we applied Fact 3.1 to 2y.

3.3 Next Time: Improving upon Greedy

Karp, Vazirani, and Vazirani [KVV90] showed that you can do better than 1
2 using what they call

the ranking algorithm: they showed a 1− 1
e competitive algorithm.3

Their algorithm is simple. Instead of randomizing over the ranking of the edges, randomize
over the offline vertices. Give each vertex v a random label `v, drawing each label independently
and uniformly at random from [0, 1]. We may assume there are no ties, i.e. `u 6= `v whenever
u 6= v.

Now, when an online node arrives, match it to an available offline node (if one exists) with the
smallest label possible. And that’s it!

References

[GM08] Gagan Goel and Aranyak Mehta. “Online budgeted matching in random input models
with applications to Adwords”. In: Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’08. San Francisco, California: Society for
Industrial and Applied Mathematics, 2008, 982–991 (cit. on p. 6).

[KVV90] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. “An optimal algorithm for online bipartite
matching”. In: STOC. 1990 (cit. on p. 6).

3Their original paper had an error which was fixed later by [GM08].

6


	Introduction
	The Secretary Problem
	Bipartite Matching

	The Greedy Algorithm
	Primal Dual Analysis
	Primal and Dual Formulations
	Analyzing the Greedy Algorithm
	Next Time: Improving upon Greedy


